Some results and open problems in the mathematical modeling of the kinetic sheath

Atelier Gaine du GDR EMILI

Context

The electrostatic and non-collisional case

The electrostatic and collisional case

The gyrokinetic sheath

Conclusion

Context

A sheath is a non neutral boundary layer in the vicinity of an absorbing material surface 1 2.

- Aims at preseving the quasi-neutrality in the plasma core by balancing the flux of charge at the wall ³.
- Depending on the physics at stake: it can be electrostatic and non collisional, electrostatic and collisional, non collisional but magnetized, etc. It can even be negative.

¹Tonks-Langmuir, A General Theory of the Plasma of an Arc, 1929

 ²Riemann, Kinetic theory of the plasma sheath transition in a weakly ionized plasma, 1981
 ³J.M Rax, Physique des Plasmas, 2005

The electrostatic and non-collisional case

One species of ions (+) and electrons (-) moving in a given direction : $x \in [0, 1], v \in \mathbb{R}, t > 0.$

$$\begin{split} \partial_t f^+ + v \partial_x f^+ &- \partial_x \phi \partial_v f^+ = 0, \quad f^+(t, 0, v > 0) = f_b^+(t, v), \quad f^+(t, 1, v < 0) = 0, \\ \partial_t f^- + v \partial_x f^- &+ \frac{1}{\mu} \partial_x \phi \partial_v f^- = 0, \quad f^-(t, 0, v > 0) = f_b^-(t, v), \quad f^-(t, 1, v < 0) = 0, \\ &- \lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} (f^+ - f^-)(t, x, v) dv, \\ \phi(t, 0) = 0, \quad \lambda^2 \partial_t \partial_x \phi(t, 1) = \int_{\mathbb{R}} (f^+ - f^-)(t, 1, v) v dv. \end{split}$$

 $\mu,\lambda\ll 1$ are the mass ratio and the Debye length. f_b^\pm are incoming distribution functions of each type of particles.

2 / 12

The stationary sheath

There is a variational approach to obtain a stationnary solution such that:

- ϕ , $\partial_x \phi$ decreases : electrons are confined in the core, ions are accelerated towards the wall.
- The plasma is quasi-neutral :

$$\int_{\mathbb{R}} (f^+ - f^-)(0, v) \mathrm{d}v = 0, \quad \left\| \int_{\mathbb{R}} (f^+ - f^-)(\cdot, v) \mathrm{d}v \right\|_{L^p[0,1]} \xrightarrow{\lambda \to 0} 0, 1 \leq p < +\infty.$$

- Bohm condition: $\int_0^{+\infty} \frac{f_b^+(v)}{v^2} dv < 1$ yields positivity and coercivity in L^2 .
- We have precise estimate as $\lambda \rightarrow 0$ for the electric field:

$$\partial_x \phi(0) \approx -\frac{\frac{1}{\lambda}}{\sinh(\frac{1}{\lambda})}$$

• We can compute $\phi(1)$ as the solution of a non linear equation:

 $\phi(1)\approx \ln(\mu)$ with quasi-Maxwellian for (-)

Analysis for abritrary $f_b^+(v)$, $f_b^-(v)$ with a generalized Bohm condition ⁴. ⁴Badsi,Godard-Cadillac, Variational radial sheath solutions for a kinetic model of a cylindrical Langmuir probe, M2AS,2023

Mehdi Badsi

Figure 1: Ionic and electronic distribution functions and densities for $\lambda = 0.1$. ⁵

Where is the sheath entrance ?

⁵Badsi, Campos-Pinto, Després, A minimization formulation of a bi-kinetic sheath, KRM, 2016.

Figure 1: Ionic and electronic distribution functions and densities for $\lambda = 0.1$.⁵

Where is the sheath entrance ? May be at the point $x_s \in]0,1[$ such that $\partial_x \phi(x_s) = \phi(1) - \phi(0) = \int_0^1 \partial_x \phi(x) dx$? For a concave potential it is well defined.

⁵Badsi, Campos-Pinto, Després, A minimization formulation of a bi-kinetic sheath, KRM, 2016.

Mehdi Badsi

(Q) Are these stationary solutions stable ? It is a natural question in the context of the Vlasov-Poisson equations: Landau Damping is known in \mathbb{T}^d or $\mathbb{R}^{d \ 6 \ 7}$. In our context some dissipation occurs at the boundary:

• Non linear stability for small perturbations of the large velocities ⁸ (with a high enough ionic equilibrium temperature).

⁶Villani-Mouhot, On Landau Damping, 2011

⁷Han-Kwan, Nguyen, Rousset, On the linearized Vlasov-Poisson equations on the whole space, 2020.

⁸Badsi, Linear and Non Linear stability for the kinetic sheath on a bounded interval, preprint Arxiv, 2024

The electrostatic and collisional case

(Q) : Can we build a sheath type solution in the weakly collisional case ? Model inspired from $^{9}. \,$

⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

The Vlasov-BGK-Poisson equation

(Q) : Can we build a sheath type solution in the weakly collisional case ? Model inspired from $^{9}. \,$

• A Vlasov-BGK equation for the ions:

$$v\partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+(\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+(0, v > 0) = f_b^+(v),$$

$$f^+(1, v < 0) = 0.$$

⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

(Q) : Can we build a sheath type solution in the weakly collisional case ? Model inspired from 9 .

• A Vlasov-BGK equation for the ions:

$$\begin{split} v\partial_x f^+ &- \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ \big(\cdot, v\big) dv \otimes \delta_{v=0} \Big), \quad f^+ (0, v > 0) = f_b^+ (v), \\ f^+ (1, v < 0) = 0. \end{split}$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$n_{e}(\alpha)(\phi)(x) = m_{\alpha}(\phi(x))e^{\phi(x)}, \quad J_{e}(\alpha) = \sqrt{\frac{2}{\mu\pi}}(1-\alpha)\int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu v^{2}}{2}}v dv.$$
(1)

⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Some results and open problems in the mathematical modeling of the kinetic sheath

(Q) : Can we build a sheath type solution in the weakly collisional case ? Model inspired from 9 .

• A Vlasov-BGK equation for the ions:

$$v\partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+(0, v > 0) = f_b^+(v),$$
$$f^+(1, v < 0) = 0.$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$n_{e}(\alpha)(\phi)(x) = m_{\alpha}(\phi(x))e^{\phi(x)}, \quad J_{e}(\alpha) = \sqrt{\frac{2}{\mu\pi}(1-\alpha)} \int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu v^{2}}{2}} v dv.$$
(1)

• A Poisson equation for the electric potential:

$$-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} f(\cdot, \mathbf{v}) d\mathbf{v} - n_e(\alpha)(\phi), \quad \phi(0) = 0, \quad \phi(1) = \phi_w.$$
⁽²⁾

⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Mehdi Badsi

(Q) : Can we build a sheath type solution in the weakly collisional case ? Model inspired from 9 .

• A Vlasov-BGK equation for the ions:

$$v\partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+(0, v > 0) = f_b^+(v),$$
$$f^+(1, v < 0) = 0.$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$n_{e}(\alpha)(\phi)(x) = m_{\alpha}(\phi(x))e^{\phi(x)}, \quad J_{e}(\alpha) = \sqrt{\frac{2}{\mu\pi}(1-\alpha)} \int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu v^{2}}{2}} v dv.$$
(1)

• A Poisson equation for the electric potential:

$$-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} f(\cdot, \mathbf{v}) d\mathbf{v} - n_e(\alpha)(\phi), \quad \phi(0) = 0, \quad \phi(1) = \phi_w.$$
⁽²⁾

 $\nu > 0$ is the friction parameter, $n_e(\alpha)$ is the density associated to a Maxwelllian where a "fraction $\approx (1 - \alpha)$ " of the negative tail has been truncated. $\varphi \mapsto m_\alpha(\varphi) \in [0, 1]$ is a modulation factor. ⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Weakly collisional sheath

There exists $\nu^* > 0$ such that for all $0 < \nu < \nu^*$ and $\lambda \ge \lambda^*(\nu) > 0$ there is a stationary ¹⁰ such that:

$$\int_{\mathbb{R}} f^+(0, v) \mathrm{d}v = n_e(\alpha)(\phi(0)), \int_{\mathbb{R}} f^+(0, v) v \mathrm{d}v = J_e(\alpha), \ \partial_x \phi < 0$$

Figure 2: I onic distribution function $f_i(x, \nu)$ for $\alpha = 0$, two values of ν : 1 and 3.5 (from top to bottom) with $\lambda = \lambda^*(\nu)^{-11}$

¹⁰Badsi, Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem,KRM, 2020

¹¹Badsi, Berthon, Crestetto, A stable fixed point method for the numerical simulation of a kinetic collisional sheath, JCP, 2020.

Mehdi Badsi

(Q) : What is the complete range of validity of this model: Which scaling between λ and ν to produce solution even in the regime $\lambda \rightarrow 0$?

The gyrokinetic sheath

 $x \in \mathbb{R}^-, v \in \mathbb{R}.$

$$v\partial_x f^+ - (\partial_x \phi \star_x w)\partial_v f^+ = 0,$$

$$w(x) = \frac{a\mathbf{1}_{]-r,r[}(x)}{\sqrt{r^2 - x^2}}, r > 0 \text{ is a Larmor radius, } a > 0$$

$$-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} (f^+ \star_x w)(x, v) dv - n(\phi \star_x w)(x).$$

- w is the kernel of the gyroaveraging operator: $||w||_{L^{1}(\mathbb{R})} = 1$.
- $n \in C^1(\mathbb{R})$ is a decreasing given electrons density.

To pose properly the problem one needs to define an extension for $x \in [0, 2r]$ since one needs to compute the density locally near x = 0. The simplest approach: consider a C^0 extension on \mathbb{R}^+ :

$$\phi(x) = \phi(0), \ x > 0,$$

$$f^+(x, v) = f^+(0, v), \ x > 0, v \in \mathbb{R}.$$

Oscillating solutions

Under oversimplyfing assumptions we prove that there exists a stationary solution such that ϕ as infinitely many oscillations around zero ¹².

Figure 3: Plot of the electric potential, linear-scale on left and log-scale on right, for 3 different values of the reference ionic density at infinity. One observes that the oscillations for high value of n_i^{ref} vanish for low value of n_i^{ref} .

The wavelength is of the order the ionic Larmor radius (*r* in our model).

¹²Badsi, Després, Campos-Pinto, Godard-Cadillac, A variational sheath model for gyrokinetic Vlasov Poissons equations, M2AN, 2021

Mehdi Badsi

Conclusion

We have studied different kinetic models with a kind of "floating potential" boundary condition and provided adapted algorithms. Two major open problems are:

- Characterization of the sheath with an incident or grazing magnetic field still is an open problem.
- In pratice, typical length of observation is much larger than the Debye length. There is a need for higher order asymptotic analysis to define a "macroscopic" boundary condition so that one avoids solving the Debye scale near the wall.

Do not sanctify the Bohm condition !

Thank you for paying attention.