Some results and open problems in the mathematical modeling of the kinetic sheath

Atelier Gaine du GDR EMILI

[Context](#page-1-0)

[The electrostatic and non-collisional case](#page-4-0)

[The electrostatic and collisional case](#page-10-0)

[The gyrokinetic sheath](#page-18-0)

[Conclusion](#page-21-0)

[Context](#page-1-0)

A sheath is a non neutral boundary layer in the vicinity of an absorbing material surface $1\,$ 2 .

- Aims at preseving the quasi-neutrality in the plasma core by balancing the flux of charge at the wall 3 .
- Depending on the physics at stake: it can be electrostatic and non collisional, electrostatic and collisional, non collisional but magnetized, etc. It can even be negative.

¹Tonks-Langmuir, A General Theory of the Plasma of an Arc, 1929

 $2R$ iemann. Kinetic theory of the plasma sheath transition in a weakly ionized plasma. 1981 3 J.M Rax, Physique des Plasmas, 2005

[The electrostatic and non-collisional](#page-4-0) [case](#page-4-0)

One species of ions $(+)$ and electrons $(-)$ moving in a given direction : $x \in [0, 1], v \in \mathbb{R}, t > 0.$

$$
\partial_t f^+ + v \partial_x f^+ - \partial_x \phi \partial_v f^+ = 0, \quad f^+(t, 0, v > 0) = f_b^+(t, v), \quad f^+(t, 1, v < 0) = 0,
$$

$$
\partial_t f^- + v \partial_x f^- + \frac{1}{\mu} \partial_x \phi \partial_v f^- = 0, \quad f^-(t, 0, v > 0) = f_b^-(t, v), \quad f^-(t, 1, v < 0) = 0,
$$

$$
-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} (f^+ - f^-)(t, x, v) dv,
$$

$$
\phi(t, 0) = 0, \quad \lambda^2 \partial_t \partial_x \phi(t, 1) = \int_{\mathbb{R}} (f^+ - f^-)(t, 1, v) v dv.
$$

 $\mu,\lambda \ll 1$ are the mass ratio and the Debye length. f_b^{\pm} are incoming distribution functions of each type of particles.

The stationary sheath

There is a variational approach to obtain a stationnary solution such that:

- ϕ , $\partial_x \phi$ decreases : electrons are confined in the core, ions are accelerated towards the wall.
- The plasma is quasi-neutral :

$$
\int_{\mathbb{R}}(f^+-f^-)(0,v)d\nu=0,\quad \Big\|\int_{\mathbb{R}}(f^+-f^-)(\cdot,v)d\nu\Big\|_{L^p[0,1]}\underset{\lambda\to 0}{\longrightarrow}0, 1\leqslant p<+\infty.
$$

- \bullet Bohm condition: $\int_0^{+\infty}$ $f_b^+(\nu)$ $\frac{v}{v^2}$ d $v < 1$ yields positivity and coercivity in L^2 .
- We have precise estimate as $\lambda \rightarrow 0$ for the electric field:

$$
\partial_x \phi(0) \approx -\frac{\frac{1}{\lambda}}{\sinh(\frac{1}{\lambda})}
$$

• We can compute $\phi(1)$ as the solution of a non linear equation:

 $\phi(1) \approx \ln(\mu)$ with quasi-Maxwellian for (-)

<u>Analysis for abritrary $f_b^+(\nu), f_b^-(\nu)$ with a generalized Bohm condition 4 .</u> ⁴Badsi,Godard-Cadillac, Variational radial sheath solutions for a kinetic model of a cylindrical Langmuir probe, M2AS,2023

Figure 1: Ionic and electronic distribution functions and densities for $\lambda = 0.1$. ⁵

Where is the sheath entrance ?

⁵Badsi, Campos-Pinto, Després, A minimization formulation of a bi-kinetic sheath, KRM, 2016.

Figure 1: Ionic and electronic distribution functions and densities for $\lambda = 0.1$. ⁵

Where is the sheath entrance ? May be at the point $x_s \in]0,1[$ such that where is the sheath entrance P way be at the point $x_s \in]0,1[$ such that $\partial_x \phi(x_s) = \phi(1) - \phi(0) = \int_0^1 \partial_x \phi(x) dx$? For a concave potential it is well defined.

 5 Badsi, Campos-Pinto, Després, A minimization formulation of a bi-kinetic sheath, KRM, 2016.

(Q) Are these stationary solutions stable ? It is a natural question in the context of the Vlasov-Poisson equations: Landau Damping is known in \mathbb{T}^d or $\mathbb{R}^{d-6-7}.$ In our context some dissipation occurs at the boundary:

 $\bullet\,$ Non linear stability for small perturbations of the large velocities 8 (with a high enough ionic equilibrium temperature).

⁶Villani-Mouhot, On Landau Damping, 2011

 7 Han-Kwan, Nguyen, Rousset, On the linearized Vlasov-Poisson equations on the whole space, 2020.

⁸Badsi, Linear and Non Linear stability for the kinetic sheath on a bounded interval, preprint Arxiv, 2024

[The electrostatic and collisional case](#page-10-0)

⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Mehdi Badsi [Some results and open problems in the mathematical modeling of the kinetic sheath](#page-0-0) 6 / 12

• A Vlasov-BGK equation for the ions:

$$
v \partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+ (0, v > 0) = f_b^+ (v),
$$

$$
f^+ (1, v < 0) = 0.
$$

⁹ Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

• A Vlasov-BGK equation for the ions:

$$
v \partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+ (0, v > 0) = f_b^+ (v),
$$

$$
f^+ (1, v < 0) = 0.
$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$
n_e(\alpha)(\phi)(x) = m_\alpha(\phi(x))e^{\phi(x)}, \quad J_e(\alpha) = \sqrt{\frac{2}{\mu\pi}}(1-\alpha)\int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu\nu^2}{2}}\,\mathrm{v} \mathrm{d}v. \tag{1}
$$

⁹ Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Mehdi Badsi [Some results and open problems in the mathematical modeling of the kinetic sheath](#page-0-0) 6 / 12

• A Vlasov-BGK equation for the ions:

$$
v \partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+ (0, v > 0) = f_b^+ (v),
$$

$$
f^+ (1, v < 0) = 0.
$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$
n_{\mathsf{e}}(\alpha)(\phi)(x) = m_{\alpha}(\phi(x))e^{\phi(x)}, \quad J_{\mathsf{e}}(\alpha) = \sqrt{\frac{2}{\mu\pi}}(1-\alpha)\int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu\nu^2}{2}}\mathsf{v}d\mathsf{v}.\tag{1}
$$

• A Poisson equation for the electric potential: ż

$$
-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} f(\cdot, v) dv - n_e(\alpha)(\phi), \quad \phi(0) = 0, \quad \phi(1) = \phi_w.
$$
 (2)

⁹ Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Mehdi Badsi [Some results and open problems in the mathematical modeling of the kinetic sheath](#page-0-0) 6 / 12

• A Vlasov-BGK equation for the ions:

$$
v \partial_x f^+ - \partial_x \phi \partial_v f^+ = -\nu \Big(f^+ - \int_{\mathbb{R}} f^+ (\cdot, v) dv \otimes \delta_{v=0} \Big), \quad f^+ (0, v > 0) = f_b^+ (v),
$$

$$
f^+ (1, v < 0) = 0.
$$

• A Vlasov equation for the electrons in a decreasing potential, the two first moments of the DF are:

$$
n_{\mathsf{e}}(\alpha)(\phi)(x) = m_{\alpha}(\phi(x))e^{\phi(x)}, \quad J_{\mathsf{e}}(\alpha) = \sqrt{\frac{2}{\mu\pi}}(1-\alpha)\int_{\sqrt{-\frac{2}{\mu}\phi(1)}}^{+\infty} e^{-\frac{\mu\nu^2}{2}}\mathsf{v}d\mathsf{v}.\tag{1}
$$

• A Poisson equation for the electric potential: ż

$$
-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} f(\cdot, v) dv - n_e(\alpha)(\phi), \quad \phi(0) = 0, \quad \phi(1) = \phi_w.
$$
 (2)

 $\nu > 0$ is the friction parameter, $n_e(\alpha)$ is the density associated to a Maxwelllian where a "fraction" ∞ $(1 - \alpha)^n$ of the negative tail has been truncated. $\varphi \mapsto m_\alpha(\varphi) \in [0,1]$ is a modulation factor. ⁹Riemann, Kinetic analysis of the collisional plasma-sheath transition, 2003, Journal of Physics D

Mehdi Badsi [Some results and open problems in the mathematical modeling of the kinetic sheath](#page-0-0) 6 / 12

Weakly collisional sheath

There exists $\nu^*>0$ such that for all $0<\nu<\nu^*$ and $\lambda\geqslant\lambda^*(\nu)>0$ there is a stationary 10 such that: ż

$$
\int_{\mathbb{R}} f^{+}(0, v) dv = n_{e}(\alpha)(\phi(0)), \int_{\mathbb{R}} f^{+}(0, v) v dv = J_{e}(\alpha), \ \partial_{x} \phi < 0
$$

Figure 2: Ionic distribution function $f_i(x, v)$ for $\alpha = 0$, two values of ν : 1 and 3.5 (from top to bottom) with $\lambda = \lambda^*(\nu)$ ¹¹

¹⁰Badsi, Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem,KRM, 2020

¹¹ Badsi, Berthon, Crestetto, A stable fixed point method for the numerical simulation of a kinetic collisional sheath, JCP, 2020.

(Q) : What is the complete range of validity of this model: Which scaling between λ and ν to produce solution even in the regime $\lambda \to 0$?

[The gyrokinetic sheath](#page-18-0)

 $x \in \mathbb{R}^-, v \in \mathbb{R}$.

$$
v\partial_x f^+ - (\partial_x \phi \star_x w) \partial_v f^+ = 0,
$$

$$
w(x) = \frac{a\mathbf{1}_{]-r,r[(x)}}{\sqrt{r^2 - x^2}}, r > 0 \text{ is a Larmor radius, } a > 0
$$

$$
-\lambda^2 \partial_{xx} \phi = \int_{\mathbb{R}} (f^+ \star_x w)(x, v) dv - n(\phi \star_x w)(x).
$$

- $\bullet~~$ w is the kernel of the gyroaveraging operator: $\|w\|_{L^1(\mathbb{R})}=1.$
- $n \in C^1(\mathbb{R})$ is a decreasing given electrons density.

To pose properly the problem one needs to define an extension for $x \in [0, 2r]$ since one needs to compute the density locally near $x=0.$ The simplest approach: consider a \textsf{C}^{0} extension on \mathbb{R}^{+} :

$$
\phi(x) = \phi(0), x > 0,
$$

$$
f^+(x, v) = f^+(0, v), x > 0, v \in \mathbb{R}.
$$

Oscillating solutions

Under oversimplyfing assumptions we prove that there exists a stationary solution such that ϕ as infinitely many oscillations around zero $^{12}.$

Figure 3: Plot of the electric potential, linear-scale on left and log-scale on right, for 3 different values of the reference ionic density at infinity. One observes that the oscillations for high value of n_i^{ref} vanish for low value of n_i^{ref} .

The wavelength is of the order the ionic Larmor radius (r in our model).

¹² Badsi, Després, Campos-Pinto, Godard-Cadillac, A variational sheath model for gyrokinetic Vlasov Poissons equations, M2AN, 2021

Mehdi Badsi [Some results and open problems in the mathematical modeling of the kinetic sheath](#page-0-0) 10 / 12

[Conclusion](#page-21-0)

We have studied different kinetic models with a kind of "floating potential" boundary condition and provided adapted algorithms. Two major open problems are:

- Characterization of the sheath with an incident or grazing magnetic field still is an open problem.
- In pratice, typical length of observation is much larger than the Debye length. There is a need for higher order asymptotic analysis to define a "macroscopic" boundary condition so that one avoids solving the Debye scale near the wall.

Do not sanctify the Bohm condition !

Thank you for paying attention.