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Presentation outline

1. Introduction and context

2. The correction algorithm

a) The plasma-wall structure model

b) Emitted EM field of the probe

3. Experimental assessment 

a) Unmagnetized ICP source

b) Weakly-magnetized plasma thruster

4. Conclusion and discussion
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The microwave resonant curling probe

▪ Previous studies [Liang2011, Arshadi2017,Ogawa2020]

▪ Principle

➢ Excitation with microwaves ~ GHz / ~mW

➢ Resonance frequency 𝑓𝑟 depends on 𝜖𝑟 of medium in contact with probe

➢ Absolute calibration of the probe response 𝑛𝑒 ∝ Δ𝑓
(valid in collisionless and weakly-magnetized plasmas) [Boni2021, Boni2023]

➢ Use of second harmonic (SHR) to extend the measurable density range
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Problem statement

• In-situ measurement 

• Probe electrically floating 

• Formation of an (electron-depleted) sheath around the probe

• Underestimation of the measured electron density
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• Sheath perturbation not negligible when sheaths are thick compared to probed volume from CP

• Underestimation of raw measured density up to 90% (worst case)

5x~10x lower



How to mitigate plasma sheath effects?
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Development of a plasma sheath correction method

Electron density profile 

due to plasma-wall interaction

The characteristic decay length (~ mm) of the 

EM field emitted by the CP



The plasma-wall structure model
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Main characteristics of the plasma-probe environment

• Electron densities 108-1011 cm-3

• Electron temperatures 5-30 eV

• Possibility to account for subsonic or supersonic ions 

• CP electrically floating

Hypothesis of the model

• 1D

• Collisionless and weakly-magnetized

• Maxwellian electrons (bulk+sheath = Te,bulk)

• Singly charged ions with Ti=0

• Ion velocity drives sheath formation

• SEE neglected

• Bohm criterion respected [Bohm1949]

→ 𝑴𝒊 = 𝒖𝒊/𝒄𝒔 < 𝟏: bulk plasma – presheath + sheath – wall

→ 𝑴𝒊 = 𝒖𝒊/𝒄𝒔 > 𝟏: bulk plasma – sheath – wall 

𝜆𝐷 = 50 µm – 4 mm

[Lieberman2005]
𝒄𝒔 =

𝒆𝑻𝒆
𝑴𝒊



The presheath region
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Presheath 

[Riemann1991]
Sheath

[Lieberman2005]

When 𝐌𝐢 = 𝒖𝒊/𝒄𝒔 <1 in the bulk plasma → presheath 

Acceleration region in which ions reach sound speed at the sheath entrance [Bohm1949]

• Quasi-neutral region, modeled according to [Riemann1991] 

scales with ion-neutral mean free path → 𝜆𝑖 ∝ 1/𝑝

• Potential drop →
𝚫𝝓𝒑𝒔

𝑻𝒆
= −

𝟏

𝟐
𝟏 −𝑴𝟐

• Density drop → 𝜶𝒑𝒔 =
𝒏𝒔

𝒏𝒃
= 𝒆

−
𝟏

𝟐
𝟏−𝑴𝟐

• If Mi=0 → Δ𝜙𝑝𝑠 = 𝑇𝑒/2 and 𝛼𝑝𝑠 = 0,61 [Lieberman2005]

Presheath effect accounted for through 

presheath/sheath density drop 𝜶𝒑𝒔



The sheath region

• Electrostatic potential equation (Poisson + Maxwellian electrons + conservation of ion flux [Lieberman2005])

• E field at sheath edge is non-zero [Godyak1990]

• 𝑑𝜙/𝑑𝑧 numerically integrated to obtain 𝜙 𝑧

• Solved for 𝒏𝒃 = 𝟏𝟎𝟖 − 𝟏𝟎𝟏𝟏 cm-3, 𝑻𝒆 = 𝟏 − 𝟓𝟎 eV, 𝑬𝒌𝒊 = 𝟓 − 𝟑𝟎𝟎 eV → 𝟎 ≤ 𝑴𝒊 ≤ 𝟏𝟎
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Sheath thickness is defined as the length over which a potential drop of modified 𝝓𝒘𝒂𝒍𝒍 occurs

𝜙𝑤𝑎𝑙𝑙 = 𝑘𝐵𝑇𝑒 ln
4𝑢𝑠
𝑢𝑒𝑙

Ion velocity at sheath edge 𝑀𝑖 ≥ 0



The dimensionless sheath thickness
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Dimensional sheath thickness (𝒔)

▪ dependent upon bulk conditions (𝑛𝑏 , 𝑇𝑒 , 𝑀𝑖) and gas

▪ For 𝑀𝑖 = 0, thickness = 16𝜆𝐷
▪ For 𝑀𝑖 = 2, thickness = 1,6𝜆𝐷

Dimensionless sheath thickness 𝑲𝒔 =
𝒔

𝝀𝑫

▪ Only dependent upon 𝑀𝑖 and gas

▪ Simpler use in the algorithm

▪ Does not include presheath width

𝝀𝑫 ≃ 𝟏 mm



Emitted EM field of the curling probe

10F. Boni, Atelier Gaines Plasma 4-6 novembre 2024

▪ 3D numerical simulations (COMSOL): frequency sweep studies

▪ EM field emitted by the CP extends for several mm above the probe surface

▪ A change in permittivity in the probed volume affects the resonance frequency
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• E field decreases by 10x times at z~5 mm

• Spatial distribution is harmonic/probe 

dependent



Definition of the dielectric depth factor of a CP
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• Direct relation btw Δ𝑓 (freq shift) and 𝑑𝑠 (dist etalon-probe)

• Excellent agreement simulations / experiments

• 3D numerical simulations are considered representative of CP 

behavior in the presence of non-homogenous permittivity profile

▪ This case can be reproduced numerically and experimentally

▪ Thickness of etalon >> characteristic decay length of emitted EM field

𝝐𝒅 = 𝟏

𝝐𝒅 =2,1

Experimental data



Definition of the plasma depth factor of a CP

12F. Boni, Atelier Gaines Plasma 4-6 novembre 2024

Simulation setup

Sheath with 𝑛𝑒 𝑧 obtained 

with model presented before 

(no presheath)

Bulk plasma

𝒏𝒃, 𝑻𝒆,𝑴𝒊

𝑛𝑏 = 108 − 1011 cm-3, 𝑇𝑒 = 1 − 50 eV, 𝐸𝑘𝑖 = 5 − 300 eV 

→ 𝟐𝟎 µ𝐦 ≤ 𝝀𝑫 ≤ 𝟓𝐦𝐦 and 𝟏𝟎𝟎 µ𝐦 ≤ 𝒔 ≤ 𝟖𝐦𝐦

• DF is the probe sensitivity to the plasma sheath (equivalency btw 𝜟𝒇 and 𝒏𝒆
𝑴𝑬𝑨𝑺)

DF uniquely depends upon sheath thickness and is harmonic/probe dependent



The correction algorithm
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Inputs 𝑛𝑚𝑒𝑎𝑠
𝑅𝐴𝑊 , 𝑇𝑒 (estimation), 𝑀𝑖 (estimation)

Computation

𝐾𝑠 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑖 , 𝑔𝑎𝑠

Iterations

𝑛𝑏𝑢𝑙𝑘
𝑖+1 = 𝐷𝐹 𝑠 𝑛𝑏𝑢𝑙𝑘

𝑖 , 𝑇𝑒 , 𝑀𝑖 ⋅ 𝑛𝑚𝑒𝑎𝑠
𝑅𝐴𝑊

𝑠 𝑛𝑏𝑢𝑙𝑘
𝑖 , 𝑇𝑒 , 𝑀𝑖 = 𝐾𝑠(𝑀𝑖) ⋅ 𝜆𝐷 𝑛𝑏𝑢𝑙𝑘

𝑖 , 𝑇𝑒

Final step If 𝑴𝒊 < 𝟏 → presheath→ 𝜶𝒑𝒔 correction

Output 𝒏𝒃𝒖𝒍𝒌
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Experimental assessment of the method
Two plasma sources

• ICP source (4 MHz)

– No B field 

– Maxwellian electrons [Esteves2022]

– Subsonic-to-sonic ions

• ECR thruster plume

– weakly-magnetized (B = 500-10 G)

→ minor role of B [Chodura1982]

– Possible deviations from Maxwellian [Correyero2017]

– Supersonic ions 
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Three comparisons

1. Curling probe vs Langmuir probe

2. FHR vs SHR of CP700 

→ same sheath thickness, different DF

3. Change of CP orientation wrt ion beam

→ same DF, different sheath thickness

Larger sheath

𝑀𝑖 < 𝑀𝑓𝑙𝑜𝑤

Thinner sheath

𝑀𝑖~𝑀𝑓𝑙𝑜𝑤

𝑴𝒇𝒍𝒐𝒘

𝑴𝒇𝒍𝒐𝒘

𝑴𝒊

𝑴𝒊

𝑴𝒊

𝑴𝒊



ICP source: FHR and SHR vs LP
• Pressure between 10-2-10-3 mbar, power between 50-100 W, argon gas

• Measurements taken far downstream the antenna (low coll. and ioniz.)

• LP post-processed using [Druyvesteyn1940] 

• CP used in P configuration

• 𝑀𝑖 = 0,7-1,3 & Te~2-4 eV → 𝑴𝒄𝒐𝒓𝒓 = 𝟏,𝑻𝒄𝒐𝒓𝒓 = 𝟑 𝐞𝐕
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• 𝑛𝑟𝑎𝑤
𝑆𝐻𝑅 < 𝑛𝑟𝑎𝑤

𝐹𝐻𝑅 → consistent with their DFs

• Corrected CP data in agreement with LP (20% discrepancy)

• Discrepancy btw FHR and SHR reduced from 40% to 10%

Validation of depth factor approach

(same plasma sheath and bulk, different harmonic)

s~ 0.35 -1.1 mm



ECR thruster plume: N and P configurations
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• Pressure ~ 10-6 mbar, power ~ 30 W, 1 SCCM xenon

• 𝑀𝑖 = 1 − 3, 𝑇𝑒 = 20 eV

• CP700 FHR 

– P configuration → 𝑴𝒄𝒐𝒓𝒓 = 𝑴𝒊 = 𝟐,𝑻𝒄𝒐𝒓𝒓 = 𝟐𝟎 eV

– N configuration → 𝑴𝒄𝒐𝒓𝒓 = 𝟎. 𝟑, 𝑻𝒄𝒐𝒓𝒓 = 𝟐𝟎 eV

• 𝑛𝑁𝑐𝑜𝑛𝑓𝑖𝑔
𝑅𝐴𝑊 < 𝑛𝑃𝑐𝑜𝑛𝑓𝑖𝑔

𝑅𝐴𝑊 due to larger sheath (discrepancy 38%)

• s~0,7-2 mm in P config vs s~1-4 mm in the N config

• Corrected parallel and normal CP data in good agreement (discrepancy <15%)

Validation of the effect of Mi on the sheath formation

(same harmonic=same DF, same bulk plasma, different sheath)



General remarks and conclusion
• 𝐾𝑠 depends only on 𝑀𝑖 and gas

• DF property is directly correlated to 𝒏𝒆 decrease due to presence of sheath

• Semi-analytical 1D and DC model used is appropriate in the cases studied here

– Density 108 – 1011 cm-3

– Temperature 5-30 eV

– Ion beams up to 200 eV (~17 km/s for xenon)

– Weakly-magnetized (< 400 G, 𝑓𝑐𝑒~1 GHz with CP at 1700 MHz)

– Collisionless or weakly-collisional (𝑓𝑐 up to ~100 MHz with CP at 700 MHz)

• Experimental observations

– 𝑛𝐶𝑃
𝑅𝐴𝑊 < 𝑛𝐿𝑃 due to sheath effects forming around the CP

– 𝑛𝐶𝑃
𝐶𝑂𝑅𝑅 in agreement with 𝑛𝐿𝑃

– 𝑛𝑁𝑐𝑜𝑛𝑓𝑖𝑔
𝐶𝑂𝑅𝑅 in agreement with 𝑛𝑃𝑐𝑜𝑛𝑓𝑖𝑔

𝐶𝑂𝑅𝑅 → ion velocity drives sheath thickness

– 𝑛𝐹𝐻𝑅
𝐶𝑂𝑅𝑅 in agreement with 𝑛𝑆𝐻𝑅

𝐶𝑂𝑅𝑅 → DF property related to density decrease in sheath
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✓ Method globally validated



Limitations of the presented model

• In the sonic-to-supersonic regime (𝑀 ≳1), method not too sensitive to 𝑴𝒄𝒐𝒓𝒓, 𝑻𝒄𝒐𝒓𝒓 (discrepancies ~20-30%)

• In the subsonic regime (𝑀 < 1), method is much more sensitive to input parameters (discrepancies ~40-60%) 

(due to presence of presheath → additional correction due to 𝛼𝑝𝑠 that is absent in the supersonic case)

• Uncertainties on 𝑇𝑐𝑜𝑟𝑟 affect more the output accuracy compared to 𝐸𝑘𝑖 → see example below

• Magnetized models should be used if 𝑓𝑝 < 𝑓 and 𝑓𝑐𝑒 → 𝑓 (B field effects cannot be neglected on 𝜖𝑝)

• P configuration → B field and ion velocity are always aligned → sheath is governed by velocity magnitude

• N configuration → according to [Ahedo1997], B effects should be weak

Considering good accordance btw N and P corrected data → B effects in sheath formation in N config can be 

neglected here
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• Te and Eki affects 𝑀𝑖

→ same effect on 𝛼𝑝𝑠
• Te affects sheath thickness more than Eki

→ it changes the scale length (𝜆𝐷)

𝑛𝑏 = 1010 cm-3, 𝑇𝑒 = 20 eV, 𝑀𝑖 = 0,7 (Eki=5 eV), 𝑛𝑟𝑎𝑤 = 3,3 × 109 cm-3



What can be improved

• Inclusion of collisions and ionization in presheath/sheath models

• More representative IEDF (not a Dirac as here) 

→ may help reduce uncertainties in the sonic transition region (where high uncertainties are now obtained)

• Computation of DF with presheath (now computed with sheath 𝑛𝑒 drop)

Acceptable in cases where density gradient in the sheath >> than that presheath AND sheath ~10x times thinner 

than presheath → this could enable more precise determination of CP sensitivity to plasma sheath in subsonic

case and thin sheaths

• Effect of strong B field at grazing incidence on sheath formation → magnetic presheath?

• Non-Maxwellian electrons / non-uniform Te across the plasma-wall structure

→ Maxwellian + uniform Te could currently overestimate sheath potential drop [Kushner1985]

• Increase representativity of sheath potential drop by considering ion beam velocity and EEDF [Schroder2015] 

• 𝜆𝐷 > s80 in our case → underestimations are always non-negligible 

→ application of this method ↑ accuracy of results

• If 𝜆𝐷 ≤ 𝑠80→ underestimations <20% and the application of method could potentially ↓ accuracy of 𝑛𝐶𝑂𝑅𝑅
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𝑠80 is thickness value for which DF=80% 

→ if 𝑠 = 𝑠80 then sheath effects could be 

neglected, since underestimations <20%



Thank you for 

your attention !
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