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RF Plasmas in industry

e Plasma etching

 Plasma deposition

e Plasma thrusters



Frequency domain

MHz rf domain GHz * Electrons follow the rf field
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Figure 4.1 A capacitively coupled electrode adjacent to a plasma excited by some
unspecified external means; V = V; sinwr.




Traditional capacitive discharges
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Impedance depends on : To find a self-consistent solution:
* \Voltage, V e Child law
« Electron density, n, « Particle balance

» Sheath size, s, » Power balance



Dual Frequency with well separated

frequencies
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A. Perret et al., Appl. Phys. Lett 86 ( 2005) 021501 Dual Frequency Capacitive (DFC)



Electrical assymmetry effect
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e [t is possible to change the self-bias by changing the phase between the two
frequencies, even when geometrically symmetrical

 The asymmetry is generated by the voltage waveform

B. G Hell, U. Czarnetzki, RP Brinkmann and T.Mussenbrock, J. Phys. D: Appl. Phys. 41 (2008) 165202



Complex wavetorms

DC Bias [V]

20 ¢

Voltage [V]
O
|
|

0 50 100 150
Time [ns]

Density [10'°m™)]
[\%]

—
T

e This is a generalization to complex waveforms
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» Electron heating is also affected NUmber of Harmonice

T. Lafleur, P.A. Delattre, E.V. Johnson, and J.P. Booth, Appl. Phys. Lett. (2012)



Motivation
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e The sheath is the most important element in capacitive
discharges

e Electron heating, EEDF, IEDF on the substrate are all
determined by the sheath physics

 Lieberman (after Godyak) supplied an analytical model of the
RF sheath for sinusoidal waveform [I[EEE Trans. Plasma Sci.
16, 638 (1988)]

 Lieberman’s model cannot be generalized to arbitrary RF
waveforms

* In this talk we present an analytical model for arbitrary RF
waveforms



The DC sheath
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The DC sheath

- Physics of Radiofrequency Plasmas
4 (_.-‘J P. Chabert and N. Braithwaite, Cambridge University Press, 2011
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e The Child-Langmuir law



The « real » RF sheath

I'n e The ion density profile is
independent of time

0 ifs<r<s, «n depends of the time-
averaged electron density
profile because the time-
averaged electric field
depends on n_(t)

n; otherwise,

e The self-consistent

\ calculation is difficult

e Lieberman could solve it
N analytically for sinusoidal
_ T waveforms (mathematical
0 S(t) S X complexity)

v




RF sheaths models
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Single frequency, sine wave:

e Valery Godyak, “Soviet Radiofrequency Discharge
Research”, Delphic Associates, Fall Church, 1986

* Michael Lieberman, IEEE Plasma Sci. 16 (1988) 638
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Plasma Electrode

Dual frequency, sine wave:
e Jérome Robiche, P C Boyle, M M Turner and A R
Ellingboe, J. Phys. D. 36 (2003) 1810

Y

More recently (including kiinetic effects and arbitrary
waveforms):

e Brian G Heil et al J. Phys. D: Appl. Phys. 41 (2008)
225208

« Mohammed Shihab et al J. Phys. D: Appl. Phys. 45
(2012 ) 185202

 Uwe Czarnetzki , Physical Review E 88, 063101 (2013)
e Miles Turner and Pascal Chabert, Appl. Phys. Lett. 104,
164102 (2014)

e P Chabert and M M Turner, J. Phys. D : Appl. Phys. 50
(2017) 23LTO2



The trick
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Time-averaged quantities
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Time-dependent quantities
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The procedure

e Current waveform as the input parameter

Find s(t): j_., 2F  _2cWd ( s ) S [ Sm / w}

ot 3 s, dt \ s
T=Sm I 1M

Find £ and V(t): ¢ (") _ <1 () 43

All other parameters are then easily calculated



Example 1: sine wave

T
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For the single frequency case treated by Lieberman [9] we choose J(t) = —.Jysinwt. From

Eqgs. (15) and (14) we find

s(t) = %(l — coswt)® (16)

Keap weo ., -

Jo = ——— ; Vo (17)
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: 384 (18)

where K.,, = 4/3. The voltage waveform is obtained by inserting Eq. (16) into Eq. (12).

Combining Eqs. (5) and (17) gives the sheath maximum expansion as a function of Jy,
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where K, = 4¢/3. These expressions are identical with those of Lieberman [1, 9], apart



Example 1: sine wave

Present Lieberman

& 0.425 0.415
Keap 1.33 1.23
K; 1.05 .82
Ke  0.566 0.417
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Example 2: pulsed waveform
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As a third example we consider a sheath excited by the pulsed waveform

t 1 1#

which is representative of several topical experiments [10-12]. We assume that this pulse
is repeated at intervals ¢, << t,,, such that successive pulses do not appreciably overlap. In

this case we find

3t
s(t) = spmexp (——f) (27)
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Vit)(V)

J(t)(Am?)

Example 2: pulsed waveform
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Conclusions

T
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A sheath model has been developed for arbitrary RF
waveforms

 Agrees well with PIC simulations

e Can be extended to two sheaths and then calculate bias
formation (see Electrical Assymetry Effect Bochum)

e Heating in the sheath (both collisionless and ohmic)
can be calculated analytically: therefore a global model
can easily be constructed



The full CCP with arbitrary wavetorm

Theory for the self-bias formation in capacitively coupled plasmas excited by
arbitrary waveforms

T Lafleur, P Chabert, M M Turner and J P Booth

Plasma Sources Sci. Technol. 22 065013 (2013)
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Selt-bias

: T't 1 L Vi, — Vi) dt V
TL fe T Jo (Ve — Vr) dt = &.Vor — ErVor

e Dashed line is when
80 ' ' ' conduction current

- balance is not satisfied
- Valleys

40}
 Excellent agreement with
PIC results if conduction

 0F - current balance is
satisfied (blue line)
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Plasma potential

Voltage [V]
Voltage [V]

 Plasma potential waveform
can be obtained
analytically

Voltage [V]
Voltage [V]
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