

Problématique des gaines dans le cadre de la propulsion plasma : moteur de Hall

Laurent Garrigues, Gwénaël Fubiani

laurent.garrigues@laplace.univ-tlse.fr

Laboratoire Plasma et Conversion d'Energie – LAPLACE Université de Toulouse, CNRS-UPS-INPT 31062 Toulouse Cedex 09, France

Plan

Moteur de Hall

Gaines et émission secondaire élec.

Modèles d'émisson secondaire élec.

Conclusions

Caractéristiques du moteur de Hall

Principe

- o lpm << L
- o Intensité de B (~ 100 G)
- o piégeage des électrons
- o lons non magnétisés et non collisionnels

Grandeurs typiques

- o Tension : 300 V, courant ~ 4 A
- o Diamètre : 10 cm, L = 2.5 cm
- o Débit Xe : 5 mg/s (densité ~ 10²⁰ m⁻³)
- o Densité de plasma : 10¹⁸ m⁻³
- o Température électronique : 50 eV

Problématique des gaines dans le cadre de la propulsion plasma X Laplace

3

Moteurs de Hall dans le monde

https://pepl.engin.umich.edu

Problématique des gaines dans le cadre de la propulsion plasma

4

Configuration magnétique

Courant de Hall

- Dérive E × B
- Interactions électron-paroi

Influence du type de céramique

Gascon et al., Phys. Plasmas 10, 4123 (2003)

 Mise en évidence de l'effet des matériaux sur la caractéristique I-V

 Courant additionnel électronique

 Effet de l'émission secondaire ?

Emission secondaire électronique

Problématique des gaines dans le cadre de la propulsion plasma

7

Saturation de charge d'espace

Hypothèses

- o Electrons, distribution Maxwellienne
- o lons froids, non collisionnels

 $\Gamma_{iw} = \Gamma_{ew}(1 - \overline{\sigma})$

$$\phi_s = \frac{k_B T_e}{e} \ln \left[(1 - \overline{\sigma}) \sqrt{\frac{m_i}{2\pi m_e}} \right]$$
$$\overline{\sigma} = \overline{\sigma}_c \approx 1 - 8.3 \sqrt{\frac{m_e}{m_i}}$$
$$\overline{\sigma}_{c,Xe} \approx 0.983$$

Hobbs and Wesson, Plasmas Physics 9, 85 (1967)

Instabilités de gaines

Emission secondaire électronique - ESE (1/2)

Processus d'interactions d'un électron avec un matériau

⊖: Electron○: Elastic colision

(b) Elastic backscattering

(c) Inelastic backscattering

E	$E_0 =$	9	$< E_0$
	Č.		
⊖: El	lectron	1	

- ○: Elastic collision
- ○: Electron emission
- (a) Secondary electron emission

M. Villemant, Toulouse, ISAE (2018)

 $\sigma = \eta_e + \eta_i + \delta$

Emission secondaire électronique - ESE (2/2)

Taux d'ESE

Spectre en énergie

M. Villemant et al., J. Phys. D: Appl. Phys., 50, 485204 (2017)

J. Roupie, Toulouse, ISAE (2013)

Distribution angulaire

Modèle original, forte énergie, $\sigma > 1$ Modifié (~ 10 paramètres), faible énergie

□: mesures

1 : élastique (η_e)

Modèle de « Vaughan » - fit des mesures

Table 3.1: Parameters of partial emission coefficients (3.16 - 3.18), which approximate the SEE properties of boron-nitride ceramics.

wmen	appro	Minate (ne onn prope	10105	or bore	m-morio	e ceramies.	
$w_0 [eV]$	k_s	$\gamma_{max,0}$	$w_{max,0}$ [eV]	r_e	$w_{e,0}$	$\gamma_{e,max}$	$w_{e,max}$ [eV]	r

0.03

 $\mathbf{2}$

500

3

1

2.0

1.5

BNSiO₂

13

novembre 2024.

Atelier

J. Vaughan, IEEE TPS, 36, 1963 (1989)

D. Sydorenko, PhD Princeton (2006)

0.55

10

0.07

Mesures – Caisson DEESSE (ONERA)

Analyseur en énergie électronique hémisphérique

Canon à ion (pour le nettoyage des échantillons)

Canon à électron de 2 keV

Canon à électrons de 30 keV

Sas d'introduction des échantillons

M. Villemant, Toulouse ISAE (2018)

- Faible divergence du faisceau incident
- Chambre à la masse et échantillon polarisé négativement (pas de recollection d'electrons – échantillon ou chambre)
- Fonction de transfert à prendre en compte + calibrage
- Neutralisation de la charge après la mesure

Mesures – taux d'émission, spectre énergie

M. Villemant et al., J. Phys. D: Appl. Phys. 50, 485204 (2017)

Mesures reproductibles sur divers matériaux

Electrons secondaires

Taux d'émission secondaire – physique des matériaux – OSMOSEE A. Jablonski, J. Phys. D: Appl. Phys. 47, 055301 (2014)

- o Dose déposée dans le matériau
- o Génération d'ES dans le matériau
- o Evaluation de la probabilité d'un ES d'atteindre la surface
- o Evaluation de la probabilité d'un ES de dépasser la surface

Energie des secondaires - Modèle de Chung-Everheart

- o Propriétés du matériau (travail de sortie)
- o Energie des électrons incidents
- o Répartition angulaire semi-isotrope : bonne hypothèse

Problématique des gaines dans le cadre de la propulsion plasma

Chung and Everheart, J. Appl. Phys 49, 707 (1974)

Electrons rétrodiffusés

Précis mais très long

○ : Elastic collision

- \bigcirc : Elastically backscattered electron
- Faible profondeur de pénétration
- 1 seule interaction effective

Répartition angulaire et énergétique

Energie des électrons rétrodiffusés

- o Mono-énergétique: bonne approximation
- Répartition angulaire

R. Gueroult et al., Front. Phys. 6:128 (2018)

Bilan

	Electrons secondaires	Électrons élastiques rétrodiffusés	Électrons inélastiques rétrodiffusés		
Taux d'émission	Modèle de "dose"				
Distribution angulaire	lsotrope	Model SLAB	Négligés, prise en compte ?		
Distribution énergie	modèle Chung and Everheart	Mono-énergetique			

M. Villemant, Toulouse ISAE (2018)

Accord qualitatif

Conclusions

- Rôle de l'émission secondaire électronique dans les propulseurs de Hall
- La détermination des propriétés de l'émission secondaire en fonction du type de matériau facteur clé
- Etablir des lois basées sur les propriétés des matériaux avec une compréhension de la physique est possible mais limité à un matériau « idéal »
- Couplage plasma avec ces lois « réalistes » d'émission secondaire électronique reste à faire

