

Probe measurements at different cathode angles in a magnetized RF plasma column

E. Faudot, A. Cherukulappurath Mana, F. Brochard, S. Heuraux, N. Clarke

P. Hiret², R. Steiner², L. Marot²

S. Alberti³, I. Furno³

¹ Institut Jean Lamour, Université de Lorraine-CNRS, ARTEM F-54000, Nancy, France
 ² Département de Physique, Université de Bâle, Bâle, Suisse
 ³ École Polytechnique de Lausanne, Swiss Plasma Center, Lausanne, Suisse

ANR SHEAR

RF Plasma and Physics of the RF sheath ALINE experiment

Goal: fundamental study on RF plasma and RF sheath Physics to explain hot spots, impurity generation during ICRH heating, and improvements of mirror cleaning for ITER (ANR SHEAR)

Recall: Aline experiment¹ was built to study RF sheath Physics ($B_0 = 0.0.1T$, $v = 10^5 - 2.10^7$ Hz) permitting to establish RF sheath model²

Aline

¹ E. Faudot et al Rev. Sci. Instrum. **86** (2015) 063502 ² E. Faudot et al IEEE TPS 50 (2022) 799-809

Objectives: Use the knowledge of RF sheath Physics to build a control the particles flux on the antenna, and mirror cleaning (ANR SHEAR)

Collaborators: EPFL Lausanne, Univ Basel

Results: 3D potentiel maps, Infared maps of the RF electrode, study on the control of the particles flux under RF fields

Limitations: unmagnetized ions, B_o too low

-Conférence invitée, X-Palaiseau "Detached fusion plasma and Sheath Physics -ITER meeting: review on RF sheath Physics

B_o= 0-0.1T, v_{RF} =10⁵-2. 10⁷ Hz, P_{RF}= 1-600 W, n_e= 10¹⁵-10¹⁷ m⁻³

Fast camera

Acquisition rate : 1Mfps (640x32)
or 640 x 480 at 326000fps
High sensitivity: ISO 160000 Monochrome

IR camera

- Optical resolution: 382 x 288 pixels
- Image frequency: 80 Hz
- Temperature coefficient: $\pm 0.05\% / K 1$)
- Measurement accuracy (at ambient temperature of
- 23 ± 5 ° C): ± 2% with a minimum of ± 2 ° C

IR camera and IR image(right)

Parameters and Variables

Avg. Density	: 10^{15} - 10^{17} m ⁻³
Avg. electron temperature	: 5eV
Pressure	: 1.6 Pa
Gas	: Helium
Coupled Power	: 20-200W
Angle of the electrode	: 0°-90°
Applied Magnetic field	: 0.025T, 0.1T

	and a los	Martines		5
	1.1			
		in the second		
COLUMN 2 IN COLUMN		and the second se	A DECKS	

He plasma, DC coupling, Al RF antenna f = 37.8 MHz $P_{RF} = -9$ dBm $P_n = 0.96$ Pa $B \sim 60$ mT 10^5 fps

After treatment with TRACK

Probe Measurements

- A self compensated RF Probe
- Voltage ramp : -70 to 70V/-40 to 100V
- 20 Sweeps
- 65KHz frequency

29/10/202,

Description of the ALINE Device

 $B_o = 0.0.1T$, $v_{RF} = 10^5 - 2.10^7$ Hz, $P_{RF} = 1.600$ W, $n_e = 10^{15} - 10^{17}$ m⁻³

Results from ALINE Device

3D maps using compensated Langmuir probe In unmagnetized plasma

Faudot /

Rev. Sci. Instrum. 86, 063502 (2015) 5

Density and floating potential profiles at 4 cathode angles

Density profile plots at z= -100 mm, -140 mm, and -180 mm (origin at electrode center) . Tilt angle of the electrode in the cartige. Density at grazing angles > 5 x higher than at 30°. Floating potential plots: The most negative structures observed for 0° and 5° tilt angle. The amplitude decreases with the distance to the RF electrode due to collisions and diffusion.

Unexpected strong negative floating potentials To be studied in more details

Negative floating potentials both observed in capacitive and direct coupling at 0° angle

The negative floating potential on

the probe appears as well in

Typical discharge parameters

EEDF from PIC simulations at 6 different magnetic field angles

PIC simulations parameters using GPU: 8 million particles (grid 768x512), rectangular box (5cm x7,5 cm), RF voltage : 100 V, DC voltage : -100 V, f=25 MHz, electrode width : 2 cm magnetic field angle from 5,7° to 90°

Modeling of the ALINE RF discharge

Equivalent circuit for cable+plasma + sheaths

Equivalent circuit for plasma + sheaths

9

Positive self-bias in a magnetized CCP discharge

Matching box

T-type

Effects of Drifts in front of tilted RF electrodes

Erosion of 5° tilted RF electrodes Mo coated

Issues of rectified RF potentials (sheath ⇔ diode)

=> higher particles energy i.e. $\Delta V \sim V_{RF}$ (Non-Linear effects) => erosion

Modelling actuels => implementation of the sheath boundary conditions in heating codes (Myra 2017)

An improved knowledge on sheath Physics versus tilting angle => particle energy distribution function => erosion rate which drives the plasma parameter and 29/10/2024 materials choices

