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Plasma sheath and interest of non equidistant points

vVvyYvyVvyy

Plasma sheath: part of hot plasma adjacent to cold wall

Presence of steep gradient

Sheath is best described by kinetic: it is far away from Maxwellian distributions
Main kinetic methods: PIC (Particle in Cell) & eulerian

Challenges:
> PIC : low density in the sheath

> eulerian: Mesh step < Debye length, with domain of one million Debye length

Non-equidistant points in eulerian simulations should help
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1D Vlasov-Poisson model

> Two species: s = e (electrons) and s = i (ions)
Vlasov for distribution function fs = fs(t, x, v)

v
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> Source term Ss = Ss(t, x, v) for loss of particle in the wall and kinetic source
(addition of particles and energy from the body of plasma)

Collision operator Css = Css(t, x, v) (warning with negative values)

vy

gs, ms : charge and mass of species s
Poisson for potential ¢ = ¢(t, x)

v
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87)((2 = qinj + QeNe, Ns = /fsdv

Simplified model to investigate plasma self-organization in contact with a wall
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Conservative laws

> Fluid quantities
> fluid density ns = [ fsdv
> particle flux I's = [ vfsdv
> Reynold’s stress Mg = [ v2fsav
> heatflux Qs = § [ v3fdv
> Conservation equations (after normalization)

> particle density
ons 1 ol

ot T Jms ox

= /Ss + Csst

> mean velocity

ols 1 oNg o _
SRy A& R R RICRCBLY

> kinetic energy
ans 2 9Qs r) .
— Zre) =
o0t *ms( o T BT /v (Ss + Css)av

Numerical conservation will be checked comparing left and right hand side
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Time discretization with Strang splitting

> X: advection in x

> V(¢): advection in v
> W: sink 1

> D:sink 2

> K: source

> C: collision

> P: Poisson: f — ¢

We form
Ant(f, #) = (Wat/2Caty2Katy2DatjaXat2V(9)atXat/2DatyeKat/2Catyz Waty2)f

and get the second order in time scheme:

{ for1 = Aat(fn, PAats2(fn, ¢n))
bni1 = Ploys

fn is an approx of f; /¢ at time ty = nAt; ¢n is the corresp. electric potential
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Semi-Lagrangian method

> we are lead to solve 1d advection equation

0, 0,
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> compute foot of characteristic: z§ = zg + AAt

> Interpolate at time nAt; here, using splines
» distribution function is assumed to be constant outside of the domain.
= if the foot falls outside the domain, boundary value is used

> Indeed, distribution function falls to zero in the wall and tends to zero for |v| large
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Splines
> nc is the number of intervals partitioning domain [a, b]
> d is the degree of the splines
» knot vector: [k_g, ..., kn,+q], with

kg<kig<--<k=a<ki - <kp1<kn=0b<-<kKnyg—1=<Knia

» splines are polynomials on each subdomain [k;, ki, 1], foreachi=10,...,nc — 1
» basis functions b; 4, i = 0,...,nc 4+ d — 1 defined through

’MM@:{ &Q;X<M“ Li=—d,... ne+d—1

> fore=1,...,dandi=—-d+¢,...,nc+d—1
bi o (x) = S(Kire — Ki)(X — Ki)bi e—1(x) + S(Kiye11 — Kix1)(Kige — X)bit1,0—1(x)
using S(z) = { g){ze’lsez 70
> definition ok for x not a knot
Extension by continuity to knots when possible
» Taking k_g = --- = kg and kn, = - -+ = Kn,+a, bo o is extended at kg to be right
continuous and by, ;.q—1,q is extended at kn, to be left continuous.
> Spline function writes

v

ne+d—1
Sa(x)= > cibig(x)
i=0
> ¢, i=0,...,nc+ d— 1 are the coefficients of the splines that are to be

determined
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Interpolation at Greville points

» We define the Greville points
i — Z,“L ki—d+j
1 — d El
> Applying the Schoenberg-Whitney theorem, the interpolation problem

i=0,...,nc+d—1

Sd(X,‘):_}/,‘7 i=0,...,nc+d-—1

has a unique solution, given values y;, i =0,...,nc +d — 1.

exp(F)

Y N\
Greville Boundary Conditions
1 rors

3rd degree spline

—— 1t degree spline
| |

8/14



Non uniform grid for the interpolation

» We use a weight function W(x) = /1 + (0.1 %(x))2 for the interpolation of u(x)

j\ Maxwellian
13 ) 2

Interpolation Error

)
J
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Error comparison for interpolation

> order increases as degree increases
» order of convergence slightly lower for non uniform grid

> improved choice of points leads to smaller error, except for very large number of
points

Lz Norm of Error

N cells
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Efficiency comparison

» Backward semi-Lagrangian advection on non-uniform splines is slower than
uniform splines

> the cost difference is much smaller on GPU

(U-1 = Uniform splines of degree 1)

103
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Number of OpenMP threads
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Vlasov-Poisson case

> We replace $Y(x) by an approximation of Ly max;,, | 2£(t, x, v)|
> and similarly for the mesh in v
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Negative values and conservation errors
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Distribution functions at time T = 2000

f_e(v,x) at t=2000.0

f_i(v,x) at t=2000.0
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The model

v

Vlasov-Poisson model for ions and electrons

{ Ouly + VOxt — Dx Oty = vl

Otfe + VOxfe + aﬁ)avfe =0
—X20%¢ =p=pi—pe=[fi—fedv

v > 0 is the ionization frequency: rate of creation of ions in presence of electrons
1 = Me/m; mass ratio between electrons and ions

A > 0 is the Debye length

E=—-0x¢
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Numerical method
> splitting scheme

At O0ifs +v0, fs =0 Linear advection along x,
2 A20,E = p; — p. Poisson problem,
At
- : Ocfi =vfe Ionization,
At : Oifs +csE0,fs =0 Linear advection along v,
At
-5 : O fi = vfe Tonization,
At A20,E = p; — p. Poisson problem,
2 Ot fs +v0, fs =0 Linear advection along .

> Lagrange interpolation for advection

d+1
= > 0 lk(@), j=0,....J
k=—d

> Lk(z) = Hgil,dyg;gk ﬁ

> xj — aAt = xj + aAx,withjp € Zand0 < a < 1

> 0 values for inflow ghost points and outflow ghost points by extrapolation with
polynomial fo degree < kj, interpolating (x;, l;.”) forj=Jd—k—»b,...,J.
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Numerical results

> Wetake A =1/2, pn =1/100 and v = 20.
> [nitial conditions:

Oy oy exp(—v2/2) o exp(—pv2/2)
7 (x,v) = mask(x, v) Tar fo (X, v) = mask(x, v)\/p Nz

> mask(x,Vv) = % (tanh(L”) tanh(*= (©. 8))> for satisfying initially the
boundary conditions
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Figure 5: Initial conditions P (left) and f2 (right).
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Numerical parameters

d = 8 and periodic boundary conditions for interpolation in velocity (in v)
d =2 and k, = 1 for spatial interpolation (in x)
Ve € [—60,60] and v; € [-50, 50]

Lagrange interpolation of degree 3 (d = 1) for passing from ion velocity mesh to
electron velocity mesh (needed for ionization step)

vvyyy
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Short time results: T = 0.1

» Comparison with a Finite Difference scheme (left) with

Ny =512, Ny, = Ny, = 513 and At such that CFL condition is satisfied; same
grid for v; and ve: [—60, 60]

> Semi-Lagrangian: Ny = 1024, N,, = 2049, N,, = 8193, At = 0.00025

(a) Electric field

n
() Density (&) Blectron distribution function
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Short time results: T = 0.2

(a) Electric field

(b) Density p
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> middle: £(t,0) = 0; right: [*, E(t,x)dx =0
> Semi-Lagrangian: Nx = 512, Ny, = N, = 513, At = 0.00025

g
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» We look for a reference solution
> At =0.025 (left) At = 0.0025 (right)

1023 (lef): N, = 408

- |

— 8193, N,, — 16385 (right)

15
256, N.,, = N. = 1023 (left): N. 5193 (right)

i = 1023 (lft): N, = 4096, (d) p for At =0.002

(b) /. for At =0.025. N, =2
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T =1,2,5and 10

> Density p (left); electron distribution function (middle,right)

> Ny =1024, N,, = 2049, N,, = 8193 and At = 0.00025 (left,middle)
> Ny =1024, N,, = 2049, N,, = 8193 and At = 0.000025 (right)

yT=2

@©T=5
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T =20 again

> left: Ny =256, Ny, = 2049, N,, = 8193 and At = 0.00025
> right: Ny = 1024, N,, = 2049, N,, = 8193 and At = 0.00025

(8) Electric field

(b) Density p
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T=20

> left: E(£,0)=0
> middle: E(t,1) = —E(t,—1)
> right: f11 E(t,x)dx =0

(¢) lon distribution function

(b) Density (d) Electron distribution function
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Numerical stability of plasma sheath
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Boundary conditions

> Non standard equilibrium Badsi, Journal of Mathematical analysis
and applications , 2017

» Question:

> How well is the equilibrium preserved by the numerical scheme?
> difficulties:

> two species and realistic mass ratio p = 361T
> treatment of boundary condition with large stencil interpolation
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Non-stationary model
Vlasov-Ampére model

Oufe +v0ufe — LEB,f. =0
7
Ofi+v0sfi+ EO,fi=0
NoE=—J
current density J(t,2) = [, v (fi(t,z,v) — fe(t,z,v)) dv

Initialization:

e incoming ion distribution:

. 1 _(w=2)2
() =14, min(1, v? e 20
0 = Loy min(1,0*/ )=

Z : macroscopic ionic velocity
o Initial data: ¢, f3", feh

Difficulties:
o wp = 1/(/;t\) plasma frequencies
e numerical constraint: w,At < 1
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Semi-Lagrangian scheme
Semi-Lagrangian scheme

e Splitting between advections in space and in velocity

1
(T) atfr’"rvar,fcﬂ =0 (Z’{) 61f87 ;EaL'fe =0
Ofitvdufi=0 Oufi+ Edufi =0
2 .
ANOE =], N OE =

o interpolation at the feet of the characteristics
£ = 0" (2, - a At),
o local Lagrange interpolation with (2d + 1)th accuracy
w250 = T((@es we)j—age<iva)-

e Second order in time Strang splitting

{(f;?;,lj))u , (E:H—l)i} = {uh.AL/QO’ﬁz,Atouh.Al/Z] {(fei0))ig (BD)i}

o Possible extension to higher order splitting
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Boundary conditions

Difficulties:

e interpolation requires values at points outside the physical domain
o Extrapolation of the distribution function

e Entrance: For any z; = iAz <0

f(O, 07 Uj), If ’Uj Z 07
f(i,]) = if
2f0.5) = f=igy» ifv; <0

e Wall: for any ziyn, = (i + No)Az > 1

Futian = 2fs,(Neus) = fss(Ne—ig)  ifv5 20,
w0 0 ifo; <0

— Dirichlet condition for incoming velocities (with constant values)

— extension by imparity for leaving velocities (butterfly procedure)
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Numerical simulations

Parameters: A = 1072,y = 1/3672
d=38, N,=2048, N, =4096,
velocity domain [—200, 500] for electrons and [—5, 5] for ions
At=10"°.

Numerical simulation: 256 processors, 24 hours, final time 7' = 8.03478

Timet=0

electron distribution ion distribution
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Numerical simulations

Parameters: A = 1072, ;1 = 1/3672

d=38, N,=2048, N, =4096,
velocity domain [—200, 500] for electrons and [—5, 5] for ions
At=107".

Numerical simulation: 256 processors, 24 hours, final time 7' = 8.03478

Timet=14

electron distribution ion distribution
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Numerical simulations
Parameters: A = 1072, p=1/3672

d=38, N,=2048, N, = 4096,
velocity domain [—200, 500] for electrons and [—5, 5] for ions
At =107°.

Numerical simulation: 256 processors, 24 hours, final time 7" = 8.03478

Timet =4

L 4

error on electron distribution error on ion distribution

range: [—4.252 x 107%,4.128 x 107%] range: [—4.03 x 1072,8.59 x 1072
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Numerical simulations
Parameters: \ = 1072, n=1/3672

d=8, N,=2048, N, = 4096,
velocity domain [—200, 500] for electrons and [—5, 5] for ions
At =10"".

Numerical simulation: 256 processors, 24 hours, final time 7" = 8.03478

Timet=8

error on electron distribution error on ion distribution
range: [—4.375 x 107%,5.589 x 107%] range: [—7.57 x 1072,1.61 x 107]
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Parameters A = 1072, = 1/3672

Numerical simulations

d=8, N,=2048, N, =4096,

velocity domain [—200, 500] for electrons and [—5, 5] for ions

At =107,

Numerical simulation: 256 processors,

24 hours, final time T' = 8.03478

current density at entry x=0

4=8 Nx=2048 Nv=4096 [-200,500]x(-5 5] di=le-5 e

002
0015
— small peak at o001
t=0.01
.o . 0.005
— stabilization
— oscillation plasma 0
21 fwp,e = 277(\/‘_/')‘) = 0005
1x1072
001
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Requires small At

— At = 10~* instead of 1077
— longer time simulation

— less accurate results

Requires large N, and N,
— N,., N, divided by 8

— instability develops in large time

Requires high order
— d =8 instead of d =0

— total energy is dissipated even

for large N, and small At

Remarks

cument deniy a niry =0

148 Nv=8192 [-500 S0018[10,10] de-le4
2048 Ny=<096 |-200.500)-5.] do=le-S ——
Nu=8192 (500 S001(-10.10) dte-5

o 0s ' 15
current density J(t,z = 0)

ot encrgy

48 Ne=2045 Nv=i086 200 S0,

1700
1650
~—
o —
160
o s ' 15

Total energy

48 NA2018 Nv=8152 -500.5001x(-10,10] dt=1e-1

48 Nx=2048 Nv=8192 [-500.500I(-10,10]di=fe-5

s ——
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Requires small At

— At = 107" instead of 10~°
— longer time simulation

— less accurate results

Requires large N, and N,
— N, N, divided by 8
— instability develops in large time

Requires high order

— d =8 instead of d =0

— total energy is dissipated even
for large N, and small At

Remarks

e density at eniey =0

428 Nx=256 NV=512 [-500 500} -10.10] distod ——
=8 NR=2048 =096 20500151551 il s ——

s

L )
current density J(t,z = 0)

ota energy

a8 V=512 [-500 S001(10.10] et
48 Ne=2048 Nv=1096 200 5001x(-5.5] dt=10-5 1

Total energy
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Requires small At

— At = 10~* instead of 10~°
— longer time simulation

— less accurate results

Requires large N, and N,
— N, N, divided by 8
— instability develops in large time

Requires high order d

— d = 8 instead of d =0

— total energy is dissipated even
for large N, and small At

s
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0008
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018
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Remarks

curent density atenty x<0)

48 Nx=2048 Nv-4096 200 S00J5-5.5] di=16-5 ——
40 Nx=2048 Ny=8152 500 300)x[ 10,10 di=5e 6
=0 Nx=2048 Nv=55536 |-500.500/x(-10,10] i=Sc-6.

s ' 15 2 25 3

current density J(t,z = 0)

o energy

1500

1750

0

8 Ny 0045 NU=4096 [ 200 500 [5.5]di=les ——

40 Nx-2048 Nv=8192 -500 S0 x[-10.10) e-5e.6 —— |
420 Nx=2048 Nv=65536 [-500 SO0JK[-10,10) dt=5e-6

0s f 15 2 25 B
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Remarks
Other boundary conditions

o Uncentered interpolation at the boundaries — instabilities (for d = 4, 5)
o Butterfly is numerically stable

total energy Nx=64 Nv=512 [-200,500]x[-5,5] dt=1e-4

2100 bunmf‘ly A4=5 m—
€Xtrapol d=5 s
butterfly d=1

2000 extrapol d=1 B
butterfly d=4

1900

extrapol d=4 s

1800

1700

1600
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