Non-Uniform Splines for Semi-Lagrangian Kinetic Simulations of the Plasma Sheath

Michel Mehrenberger

I2M, Université Aix-Marseille, France

Marseille, november 2024

Atelier gaine plasma <https://gaine2024.sciencesconf.org>

Joint work with Emily Bourne, Yann Munschy, Virginie Grandgirard, Philippe Ghendrih (CEA Cadarache) <https://doi.org/10.1016/j.jcp.2023.112229>

Plasma sheath and interest of non equidistant points

- \blacktriangleright Plasma sheath: part of hot plasma adjacent to cold wall
- \blacktriangleright Presence of steep gradient
- \triangleright Sheath is best described by kinetic: it is far away from Maxwellian distributions
- ▶ Main kinetic methods: PIC (Particle in Cell) & eulerian
- \blacktriangleright Challenges:
	- \blacktriangleright PIC : low density in the sheath
	- **D** eulerian: Mesh step \lt Debye length, with domain of one million Debye length

Non-equidistant points in eulerian simulations should help

1D Vlasov-Poisson model

- \triangleright Two species: $s = e$ (electrons) and $s = i$ (ions)
- \blacktriangleright **Vlasov** for distribution function $f_s = f_s(t, x, v)$

$$
\frac{\partial f_s}{\partial t} + v \frac{\partial f_s}{\partial x} - \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_s}{\partial v} = S_s + C_{ss}
$$

- Source term $S_s = S_s(t, x, v)$ for loss of particle in the wall and kinetic source (addition of particles and energy from the body of plasma)
- \triangleright Collision operator $C_{ss} = C_{ss}(t, x, v)$ (warning with negative values)
- \blacktriangleright q_s , m_s : charge and mass of species *s*
- **Poisson** for potential $\phi = \phi(t, x)$

$$
-\varepsilon_0\frac{\partial^2\phi}{\partial x^2}=q_i n_i+q_{\theta} n_{\theta},\ n_s=\int f_s d\nu
$$

Simplified model to investigate plasma self-organization in contact with a wall

Conservative laws

- \blacktriangleright Fluid quantities
	- **F** fluid density $n_s = \int f_s dV$
particle flux $\Gamma_s = \int v f_s dV$
	-
	- **P** Reynold's stress $\overline{\Pi}_s = \int v^2 f_s dv$
	- ▶ heat flux $Q_s = \frac{1}{2} \int v^3 f dv$
- \triangleright Conservation equations (after normalization)
	- \blacktriangleright particle density

$$
\frac{\partial n_s}{\partial t} + \frac{1}{\sqrt{m_s}} \frac{\partial \Gamma_s}{\partial x} = \int S_s + C_{ss} dv
$$

 \blacktriangleright mean velocity

$$
\frac{\partial \Gamma_s}{\partial t} + \frac{1}{\sqrt{m_s}}(\frac{\partial \Pi_s}{\partial x} + q_s \frac{\partial \phi}{\partial x} n_s) = \int v(S_s + C_{ss})dv
$$

 \blacktriangleright kinetic energy

$$
\frac{\partial \Pi_s}{\partial t} + \frac{2}{\sqrt{m_s}}(\frac{\partial Q_s}{\partial x} + q_s \frac{\partial \phi}{\partial x}\Gamma_s) = \int v^2 (S_s + C_{ss}) dv
$$

Numerical conservation will be checked comparing left and right hand side

Time discretization with Strang splitting

- \blacktriangleright *X*: advection in *x*
- \blacktriangleright *V*(ϕ): advection in *v*
- \blacktriangleright *W*: sink 1
- \triangleright *D*: sink 2
- \blacktriangleright *K*: source
- \triangleright *C*: collision
- **P**: Poisson: $f \rightarrow \phi$

We form

$$
\mathcal{A}_{\Delta t}(f,\phi)=(W_{\Delta t/2}C_{\Delta t/2}K_{\Delta t/2}D_{\Delta t/2}X_{\Delta t/2}V(\phi)_{\Delta t}X_{\Delta t/2}D_{\Delta t/2}K_{\Delta t/2}C_{\Delta t/2}W_{\Delta t/2})f
$$

and get the second order in time scheme:

$$
\begin{cases} f_{n+1} = \mathcal{A}_{\Delta t}(f_n, P \mathcal{A}_{\Delta t/2}(f_n, \phi_n)) \\ \phi_{n+1} = P f_{n+1} \end{cases}
$$

f_n is an approx of f_{i/e} at time $t_n = n\Delta t$ *;* ϕ_n *<i>is the corresp. electric potential*

Semi-Lagrangian method

▶ we are lead to solve 1*d* advection equation

► compute foot of characteristic: $z_6^* = z_6 + A\Delta t$

- I Interpolate at time *n*∆*t*; here, using splines
- \blacktriangleright distribution function is assumed to be constant outside of the domain.
	- \Rightarrow if the foot falls outside the domain, boundary value is used
- Indeed, distribution function falls to zero in the wall and tends to zero for $|v|$ large

Splines

- \triangleright *n_c* is the number of intervals partitioning domain [*a*, *b*]
- \blacktriangleright *d* is the degree of the splines
- **►** knot vector: $[k_{-d}, \ldots, k_{n_c+d}]$, with

 $k_{-d} < k_{1-d} < \cdots < k_0 = a < k_1 \cdots < k_{n-1} < k_0 = b < \cdots < k_{n+d-1} < k_{n+d}$

- ^I splines are polynomials on each subdomain [*kⁱ* , *ki*+1], for each *i* = 0, . . . , *n^c* − 1
- **►** basis functions $b_{i,d}$, $i = 0, \ldots, n_c + d 1$ defined through

$$
b_{i,0}(x) = \begin{cases} 1, k_i < x < k_{i+1} \\ 0, \text{ else} \end{cases}, i = -d, ..., n_c + d - 1
$$

\n
$$
b_{i,\ell}(x) = 1, ..., d \text{ and } i = -d + \ell, ..., n_c + d - 1
$$

\n
$$
b_{i,\ell}(x) = S(k_{i+\ell} - k_i)(x - k_i)b_{i,\ell-1}(x) + S(k_{i+\ell+1} - k_{i+1})(k_{i+\ell} - x)b_{i+1,\ell-1}(x)
$$

\nusing $S(z) = \begin{cases} 1/z, z \neq 0 \\ 0, \text{ else} \end{cases}$

- ▶ definition ok for *x* not a knot
- \blacktriangleright Extension by continuity to knots when possible
- **►** Taking $k_{-d} = \cdots = k_0$ and $k_{n_c} = \cdots = k_{n_c+d}$, $b_{0,d}$ is extended at k_0 to be right ϵ continuous and $b_{n_c+d-1,d}$ is extended at k_{n_c} to be left continuous.
- \blacktriangleright Spline function writes

$$
S_d(x) = \sum_{i=0}^{n_c+d-1} c_i b_{i,d}(x)
$$

 \triangleright *c_i*, *i* = 0, ..., *n_c* + *d* − 1 are the coefficients of the splines that are to be determined

Interpolation at Greville points

 \blacktriangleright We define the Greville points

$$
x_i = \frac{\sum_{j=1}^d k_{i-d+j}}{d}, i = 0, \ldots, n_c + d - 1
$$

 \blacktriangleright Applying the Schoenberg-Whitney theorem, the interpolation problem

$$
S_d(x_i) = y_i, i = 0, ..., n_c + d - 1
$$

has a unique solution, given values y_i , $i = 0, \ldots, n_c + d - 1$.

Non uniform grid for the interpolation

▶ We use a weight function $W(x) = \sqrt{1 + (0.1 \frac{\partial u}{\partial x}(x))^2}$ for the interpolation of $u(x)$

Error comparison for interpolation

- \triangleright order increases as degree increases
- \triangleright order of convergence slightly lower for non uniform grid
- \triangleright improved choice of points leads to smaller error, except for very large number of points

Efficiency comparison

- \blacktriangleright Backward semi-Lagrangian advection on non-uniform splines is slower than uniform splines
- \blacktriangleright the cost difference is much smaller on GPU

 $(U-1 = Uniform$ splines of degree 1)

Vlasov-Poisson case

▶ We replace $\frac{\partial u}{\partial x}(x)$ by an approximation of L_x max_{*t*,*v*} $|\frac{\partial f}{\partial x}(t, x, v)|$

 \blacktriangleright and similarly for the mesh in ν

Negative values and conservation errors

Distribution functions at time $T = 2000$

 (b) Ions

High order numerical methods for Vlasov-Poisson models of plasma sheaths

Michel Mehrenberger

I2M, Université Aix-Marseille, France

Marseille, november 2024

Joint work with Valentin Ayot, Mehdi Badsi, Yann Barsamian, Anaïs Crestetto, Nicolas Crouseilles, Averil Prost and Christian Tayou-Fotso <https://inria.hal.science/hal-03926305>

The model

 \blacktriangleright Vlasov-Poisson model for ions and electrons

$$
\begin{cases} \n\partial_t f_i + v \partial_x f_i - \partial_x \phi \partial_v f_i = \nu f_e \\
\partial_t f_e + v \partial_x f_e + \frac{\partial_x \phi}{\mu} \partial_v f_e = 0 \\
-\lambda^2 \partial_{xx}^2 \phi = \rho = \rho_i - \rho_e = \int f_i - f_e \, dv\n\end{cases}
$$

 $\triangleright \nu \geq 0$ is the ionization frequency: rate of creation of ions in presence of electrons

- \blacktriangleright $\mu = m_e/m_i$ mass ratio between electrons and ions
- \blacktriangleright $\lambda > 0$ is the Debye length

$$
\blacktriangleright E = -\partial_x \phi
$$

Numerical method

 \blacktriangleright splitting scheme

$$
\frac{\Delta t}{2} : \qquad \begin{cases} \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection along } x, \\ \lambda^2 \partial_x E = \rho_i - \rho_e & \text{Poisson problem,} \end{cases}
$$
\n
$$
\frac{\Delta t}{2} : \qquad \partial_t f_i = \nu f_e \qquad \text{Ionization,}
$$
\n
$$
\Delta t : \qquad \partial_t f_s + c_s E \partial_v f_s = 0 & \text{Linear advection along } v, \end{cases}
$$
\n
$$
\frac{\Delta t}{2} : \qquad \partial_t f_i = \nu f_e \qquad \text{Ionization,}
$$
\n
$$
\frac{\Delta t}{2} : \qquad \begin{cases} \lambda^2 \partial_x E = \rho_i - \rho_e & \text{Poisson problem,} \\ \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection along } x. \end{cases}
$$

 \blacktriangleright Lagrange interpolation for advection

$$
f_j^{n+1} = \sum_{k=-d}^{d+1} f_{j_0+k}^n L_k(\alpha), \ j = 0, \ldots, J
$$

- ► $L_k(z) = \prod_{\ell=--d, \ell \neq k}^{d+1} \frac{z-k}{\ell-k}$
- \triangleright *x*_{*j*} − *a*∆*t* = *x*_{*j*0} + α∆*x*, with *j*₀ ∈ ℤ and 0 ≤ α < 1
- \triangleright 0 values for inflow ghost points and outflow ghost points by extrapolation with polynomial fo degree $\leq k_b$, interpolating (x_j, f_j^n) for $j = J - k - b, \ldots, J$.

Numerical results

- \blacktriangleright We take $\lambda = 1/2$, $\mu = 1/100$ and $\nu = 20$.
- \blacktriangleright Initial conditions:

$$
f_i^0(x, v) = \text{mask}(x, v) \frac{\exp(-v^2/2)}{\sqrt{2\pi}}, \ f_e^0(x, v) = \text{mask}(x, v) \sqrt{\mu} \frac{\exp(-\mu v^2/2)}{\sqrt{2\pi}}
$$

▶ *mask*(*x*, *v*) = $\frac{1}{2}$ (*tanh*($\frac{x-(-0.8)}{0.1}$) – *tanh*($\frac{x-(0.8)}{0.1}$)), for satisfying initially the boundary conditions

Figure 5: Initial conditions f_i^0 (left) and f_e^0 (right).

Numerical parameters

- \blacktriangleright $d = 8$ and periodic boundary conditions for interpolation in velocity (in *v*)
- \blacktriangleright *d* = 2 and *k_b* = 1 for spatial interpolation (in *x*)
- ^I *^v^e* [∈] [−60, ⁶⁰] and *^vⁱ* [∈] [−50, ⁵⁰]
- Eagrange interpolation of degree 3 $(d = 1)$ for passing from ion velocity mesh to electron velocity mesh (needed for ionization step)

Short time results: $T = 0.1$

- \triangleright Comparison with a Finite Difference scheme (left) with $N_x = 512$, $N_{v_i} = N_{v_e} = 513$ and Δt such that CFL condition is satisfied; same grid for *vⁱ* and *ve*: [−60, 60]
- ^I Semi-Lagrangian: *^N^x* ⁼ ¹⁰²⁴, *^Nvⁱ* ⁼ ²⁰⁴⁹, *^Nv^e* ⁼ ⁸¹⁹³, [∆]*^t* ⁼ ⁰.⁰⁰⁰²⁵

Short time results: $T = 0.2$

 $T = 20$

 $I\blacktriangleright$ Semi-Lagrangian: $N_x = 512$, $N_{v_i} = N_{v_e} = 513$, $\Delta t = 0.00025$

 $T = 5$

- \blacktriangleright We look for a reference solution
- $\triangle t = 0.025$ (left) $\triangle t = 0.0025$ (right)

(a) ρ for $\Delta t = 0.025$. $N_x = 256$, $N_{v_x} = N_{v_i} = 1023$ (left): $N_x = 4096$, $N_{v_x} = 8193$, $N_{v_i} = 16385$ (right)

$T = 1, 2, 5$ and 10

- **Density** ρ **(left); electron distribution function (middle, right)**
- $N_x = 1024$, $N_{v_i} = 2049$, $N_{v_e} = 8193$ and $\Delta t = 0.00025$ (left,middle)
- $N_x = 1024$, $N_{v_i} = 2049$, $N_{v_e} = 8193$ and $\Delta t = 0.000025$ (right)

$T = 20$ again

$T = 20$

left: $E(t, 0) = 0$ \triangleright middle: $E(t, 1) = -E(t, -1)$ ► right: $\int_{-1}^{1} E(t, x) dx = 0$

Numerical stability of plasma sheath

Michel Mehrenberger

I2M, Université Aix-Marseille, France

Marseille, november 2024

Joint work with Mehdi Badsi and Laurent Navoret <https://doi.org/10.1051/proc/201864017>

Boundary conditions

- ▶ Non standard equilibrium Badsi, Journal of Mathematical analysis and applications , 2017
- Question:
	- \blacktriangleright How well is the equilibrium preserved by the numerical scheme?
	- \blacktriangleright difficulties:
		- ivo species and realistic mass ratio $\mu = \frac{1}{3672}$
		- In the species and reduction mass rate $\mu = 3672$
 I treatment of boundary condition with large stencil interpolation

Non-stationary model

Vlasov-Ampère model

$$
\partial_t f_e + v \partial_x f_e - \frac{1}{\mu} E \partial_v f_e = 0
$$

$$
\partial_t f_i + v \partial_x f_i + E \partial_v f_i = 0
$$

$$
\lambda^2 \partial_t E = -J
$$

current density $J(t, x) = \int_{v \in \mathbb{R}} v (f_i(t, x, v) - f_e(t, x, v)) dv$

Initialization:

· incoming ion distribution:

$$
f_{s_i}^{in}(v) = \mathbf{1}_{\{v>0\}} \min(1, v^2/\eta) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(v-Z)^2}{2\sigma^2}}
$$

 Z : macroscopic ionic velocity

• Initial data: ϕ^{sh} , f_i^{sh} , f_e^{sh}

Difficulties:

- $\omega_p = 1/(\sqrt{\mu}\,\lambda)$ plasma frequencies
- numerical constraint: $\omega_p \Delta t \leq 1$

Semi-Lagrangian scheme

Semi-Lagrangian scheme

• Splitting between advections in space and in velocity

$$
(T) \t\t \partial_t f_e + v \partial_x f_{s_e} = 0 \t\t (U) \t\t \partial_t f_e - \frac{1}{\mu} E \partial_v f_e = 0 \n\partial_t f_i + v \partial_x f_i = 0 \t\t \partial_t f_i + E \partial_v f_i = 0 \n\lambda^2 \partial_t E = -J,
$$
\n
$$
\lambda^2 B_e = 0
$$

• interpolation at the feet of the characteristics

$$
f_j^{n+1} = \left[\Pi f^n\right](x_j - a \Delta t),
$$

• local Lagrange interpolation with $(2d+1)$ th accuracy

$$
[\Pi f]_{\big| [x_j, x_{j+1}]} = \pi((x_\ell, w_\ell)_{j-d \leq \ell \leq j+d}).
$$

• Second order in time Strang splitting

$$
\left\{ \left(f_{s,(i,j)}^{n+1} \right)_{i,j}, \left(E_i^{n+1} \right)_{i} \right\} = \left[\mathcal{U}_{h,\Delta t/2} \circ \mathcal{T}_{h,\Delta t} \circ \mathcal{U}_{h,\Delta t/2} \right] \left\{ \left(f_{s,(i,j)}^n \right)_{i,j}, \left(E_i^n \right)_{i} \right\}
$$

• Possible extension to higher order splitting

Boundary conditions

Difficulties:

- interpolation requires values at points outside the physical domain
- Extrapolation of the distribution function
- Entrance: For any $x_i = i\Delta x < 0$

$$
f_{(i,j)} = \begin{cases} f(0,0,v_j), & \text{if } v_j \ge 0, \\ 2f_{(0,j)} - f_{(-i,j)}, & \text{if } v_j < 0. \end{cases}
$$

• Wall: for any $x_{i+N_x} = (i+N_x)\Delta x > 1$

$$
f_{s,(i+N_x,j)} = \begin{cases} 2f_{s,(N_x,j)} - f_{s,(N_x-i,j)} & \text{if } v_j \ge 0, \\ 0 & \text{if } v_j < 0 \end{cases}.
$$

 \rightarrow Dirichlet condition for incoming velocities (with constant values)

 \rightarrow extension by imparity for leaving velocities (butterfly procedure)

Parameters: $\lambda=10^{-2},\,\mu=1/3672$

 $d = 8$, $N_x = 2048$, $N_v = 4096$, velocity domain $[-200, 500]$ for electrons and $[-5, 5]$ for ions $\Delta t = 10^{-5}$.

Numerical simulation: 256 processors, 24 hours, final time $T = 8.03478$

Parameters:
$$
\lambda = 10^{-2}
$$
, $\mu = 1/3672$

\n $d = 8$, $N_x = 2048$, $N_v = 4096$,
\nvelocity domain $[-200, 500]$ for electrons and $[-5, 5]$ for ions

\n $\Delta t = 10^{-5}$.

Numerical simulation: 256 processors, 24 hours, final time $T = 8.03478$

Time $t = 4$

Parameters: $\lambda = 10^{-2}$, $\mu = 1/3672$

$$
d = 8, \quad N_x = 2048, \quad N_v = 4096,
$$

velocity domain [-200, 500] for electrons and [-5, 5] for ions

$$
\Delta t = 10^{-5}.
$$

Numerical simulation: 256 processors, 24 hours, final time $T = 8.03478$

Parameters: $\lambda = 10^{-2}$, $\mu = 1/3672$

$$
d = 8, \quad N_x = 2048, \quad N_v = 4096,
$$

velocity domain [-200, 500] for electrons and [-5, 5] for ions

$$
\Delta t = 10^{-5}.
$$

Numerical simulation: 256 processors, 24 hours, final time $T = 8.03478$

Parameters $\lambda = 10^{-2}$, $\mu = 1/3672$ $d = 8$, $N_x = 2048$, $N_y = 4096$,

> velocity domain $[-200, 500]$ for electrons and $[-5, 5]$ for ions $\Delta t = 10^{-5}$.

Numerical simulation: 256 processors, 24 hours, final time $T = 8.03478$

current density at entry x=0

• Requires small Δt

- $\rightarrow \Delta t = 10^{-4}$ instead of 10^{-5}
- \rightarrow longer time simulation
- \rightarrow less accurate results
- Requires large N_x and N_y
	- \rightarrow N_x, N_y, divided by 8
	- \rightarrow instability develops in large time
- Requires high order \rightarrow d = 8 instead of d = 0 \rightarrow total energy is dissipated even for large N_v and small Δt

- Requires small Δt
	- $\rightarrow \Delta t = 10^{-4}$ instead of 10^{-5}
	- \rightarrow longer time simulation
	- \rightarrow less accurate results

• Requires large N_r and N_r

- \rightarrow N_x, N_v divided by 8
- \rightarrow instability develops in large time
- Requires high order
	- $\rightarrow d = 8$ instead of $d = 0$
	- \rightarrow total energy is dissipated even for large N_v and small Δt

current develop at entry suff 06 del Neu256 Nye512 1-500 5000x1-10 101 dia local an disk Neil2018 Recorded L200 S003(LS S1 drille, S. a. 0.4 0.2 -0.2 -0.4 -0.6 ×, 35 current density $J(t, x = 0)$

- Requires small Δt $\rightarrow \Delta t = 10^{-4}$ instead of 10^{-5}
	- \rightarrow longer time simulation
	- \rightarrow less accurate results
- Requires large N_x and N_v \rightarrow N_x, N_v divided by 8
	-
	- \rightarrow instability develops in large time
- Requires high order d
	- \rightarrow d = 8 instead of d = 0 \rightarrow total energy is dissipated even for large N_v and small Δt

Other boundary conditions

- Uncentered interpolation at the boundaries \rightarrow instabilities (for $d = 4, 5$)
- Butterfly is numerically stable

total energy Nx=64 Nv=512 [-200,500]x[-5,5] dt=1e-4