

FR FCM

Utilisation des codes PIC pour l'étude des interactions plasma-paroi à l'IJL

Atelier Gaines Plasmas

Jérôme Moritz

Institut Jean Lamour - CNRS - Université de Lorraine. Campus Artem 2 allée André Guinier BP 50840 54011 Nancy Cedex – France.

04/11/2024

- A) Temperature of a tungsten surface under high heat flux plasma Thesis C. Djerroud (initiation of unipolar arcs started 2019)
- B) Erosion & redeposition of a liquid metal PFCs Thesis R. Avril / Renaissance Fusion (started 2023)
- C) Radio-frequency sheath and sputtering mitigation (ICRF antennas) Thesis L. Tsowemoo / IPP Garching - V. Bobkov (started 2024)

A) Temperature of a tungsten surface under high heat flux plasma

 \rightarrow J. Moritz et al, Nuclear Materials and Energy 41, 101753 (2024)

 \rightarrow J. Moritz et al, Phys. Plasmas 30, 083514 (2023)

Experimental context of bifurcation

Fig. 2. The experimental results for tungstep plate in helium plasma. At t = 24 min, corresponding to $I_p = 98$ A, $V_p = 190$ V, $n_e \approx 4.0 \times 10^{18}$ m⁻³

- * Floating conditions
- st Cooling of the plasma due to cold thermoelectrons

Spot & Surface Model

* Tungsten surface with κ in the range 15-160 Wm⁻¹K⁻¹ (altered surface)

****** Fluid modeling and PIC simulations

$$*L_x = 100\lambda_d$$

* Different plasma conditions, plasma source (no electron cooling), B=0

 \rightarrow Determine self-consistently T_s

Heat Flux & Fluid Approach of bifurcation

Heat flux at the surface:

$$Q_c = J_s / e(2k_bT_s + B_w) + \epsilon \sigma T_s^4 + \frac{\kappa}{t}(T_s - T_0)$$

Thermionic current surface cooling

$$Q_{p} = J_{i}/e(2k_{b}T_{i}+E_{i}-B_{w}+e\phi_{s})+J_{e}/e(2k_{b}T_{e}+B_{w})$$

Ion heating

Electron heating

The constants of W are A=0.6×10⁶ Am⁻²K⁻², B_w=4.55eV and ϵ = 0.25

Tokar, Nedospasov, and Yarochkin, Nuclear Fusion 32, 15 (1992)

Currents:

 $J_{s} = A T_{s}^{2} \exp{-\frac{B_{w}}{k_{b}T_{s}}} \rightarrow \text{Richardson Formula}$ $J_{e} = \frac{en_{s}c_{e}}{4} \exp{-\frac{e\phi_{s}}{k_{b}T_{e}}} \rightarrow \text{Maxwellian flux}$

 $J_i = en_s c_s \rightarrow Bohm flux$

Sheath potential:

$$e \phi_s = e \phi_f - k_b T_e \log \left(1 + \frac{J_s}{e n_s c_s}\right)$$

 \rightarrow 1d Approx. ambipolarity $J_i + J_s \simeq J_e$

Surface Electric field:

 $E_s = f(\phi_s, J_s) \rightarrow \text{Until E}_s = 0$ then SCL regime

Hobbs and Wesson, Plasma Physics 9, 85 (1967)

Heat Flux & Fluid Approach of bifurcation

* Using fluid formula calculation of $Q_p(t)$ and $Q_c(t) \rightarrow T_s$

* "S" curves of
$$T_s = f(T_e, \kappa, n_0...)$$

7

Plasma Space potential vs. thermal cond.

w/ PIC simulations:

* At each t, $Q_p = Q_c \rightarrow T_s$ until the steady state

* One parameter change (Te, κ , n_0) = one simulation = one T_s , space potential...

* Averaging for several dozen of pl. periods for determining T_s

* Hysteresis ?

PIC : Sheath building

* At each t, $Q_p = Q_c$

% First plasma periods = sheath
building and high heat loads

* Introduction of a waiting time in the simulations before injecting TE electrons

% For intermediate plasma heat loads can result in 2 different final states = hysteresis

PIC & Hysteresis

 \ast High V_f, low T_ and low current / low V_f, high T_ and max current

* Hysteresis evidenced by changing initial conditions in the PIC simulations.

 $\# J_s$ saturates around $3n_0c_s =$ when emitted current → Bohm current = bifurcation

INSTITUT

B) Erosion & redeposition of a liquid metal plasma-facing components Romain Avril, PhD

 \rightarrow "Erosion and transport of lithium from a liquid metal wall facing a fusion plasma" - Romain Avril, Oral presentation at the "Journée de la Matière Condensée 2024", 28-31 Oct. 2024, Marseille

Liquid metal plasma-facing components

- Liquid metals might be an interesting option for economically competitive fusion reactors, especially for compact machines, due to 'self-healing' properties
- Several designs classified as function of the dominating heat transfer mechanism and flow characteristics (velocity, thickness, etc)

W Solid PFC = cracking / melting (Q. Tichit / IRFM thesis 2024)

CPS working principle (Courtesy to T. Morgan 2023)

Renaissance Fusion's concept of LMW

- 30cm thick fast flowing Li-LiH mixture with Pb cerramic pebbles between 700°C and 900°C
- Poloidal electric current (few kA) injected in the liquid metal layer + axial magnetic field (10T) = Radial force

Skyfall liquid metal (galinstan) loop (taken from N. Baker-Wolff - 13th PAMIR conference)

PIC model for ionization

- Investigation with a 1D3V Particle-in-Cell (PIC) code
- Electron-induced ionization is the only simulated atomic process
- Only evaporation is considered in the relevant temperature range where it is dominant (500°C-700°C)
- Surface temperature is constant (Renaissance Fusion's configuration)
- **Objective** : Make first redeposition estimations and investigate the impact of Li on sheath/presheath

Simulated sheath region (fews 10mm) and physics

FIISION

RENAISSANCE

Space Potential profiles with Li

Evolution of the potential profile for several flux ratios

- Ionization in the presheath
- Potential profile flattenning in the ionization region due to Li injection
- Decrease of the redeposition
- Transient potential hump

Redeposition trends

- 4 keys parameters : Γ_{μ}/Γ_{p} , $\lambda_{\mu}/\lambda_{p}$, θ and B
- High redeposition of evaporated Li atoms (>95%)
- Results in accordance with the work of Brooks and Naujoks (2000) made with BPHI-3D
- Prediction of a potential hump that accelerates Li ions towards the plasma (depends on the Li source and the magnetic inclination) => Reduces the redeposited fraction

C) Radio-frequency sheath and sputtering mitigation (ICRF antennas) Léonel Tsowemoo, PhD

Objectives & context (collab. IPP Garching + Uni. Basel)

180eV w/ ICRH vs. 30eV Ohmic case (Bobkov NME 18,131) \ast ICRF antenna source of strong RF fields \rightarrow oscillating sheaths

 \ast Sheath rectification leads to ion acceleration \rightarrow Sputtering

* Major concern for the application of ICRF power in a high-Z environment

Objectives:

- Characterization of RF sheath properties for H/D/T species vs RF frequency, B amplitude and incidence (focus on grazing ones), sheath impedance + measurements @ Basel

- W sputtering due to C,O, B + self sputt. + redep. vs edge plasma properties + measurements @ Basel

Model / some results

Model / some results

* Diamond Open Access (free for both authors and readers)

* Hosted on the Episciences platform (CNRS / CCSD)

* Launched in 2024

* International editorial committee

% SUBMIT! (please) €

