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• Direct-current glow discharge, moderate pressure range 
(10-100 Pa) can be used to grow nanoparticles [1]

• Cathode sputtering is generally the main source of matters 
for nanoparticle growth

• Acceleration of ions and production of fast neutral in the 
cathode sheath are essential to cathode sputtering
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• Nanoparticle growth dynamics in 
DC glow discharge, including the
cathode sheath ⇒ Development 
of a simulation code adapted to 
this regime.

[1] Kishor, Couëdel and Aranas, Phys Plasmas 20, 043707 (2013)
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• Numerical tools usually based on kinetic or fluid description

• Kinetic approach gives evolution of distribution functions in the phase-space.
•  Advantage: Description of physical mechanisms at play in the velocity space
•  Drawback: sometime difficult to interpret and time consuming

• Fluid approach is a reduction of the kinetic approach by integrating the velocity space
•  Advantage: access to more intuitive physical quantities and faster, lighter 
•  Drawback: lose information from the velocity space, closure approximations
•  => Fluid models can be improved by adding appropriate physical ingredients

• Physics of DC discharge and the formation of plasma sheath in moderate pressure range 
(semi-collisional regime) using both approaches
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I. Context

Plasma devices -
Experimental 

studies

Plasma 
modelling - 

mathematical 
description

Numerical 
simulation - 

discrete algebraic 
resolution



Ion-neutral elastic collisionality level and its impact to ion temperature [2]
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Collisionsless 
regime

Transitional 
regime

Collision 
dominated 

regime

• Low pressure plasma sheath

• Energy conservation of 
particles

• Focus of this work

• Widening of distribution 
functions implies an increase 
of the thermal energy

• Non Maxwellian sheaths

• Bulk plasma, high pressure 
discharges

• Heavy charged particles 
thermalized with the neutral 
background

10−2 1
𝛼

I. Context

[2] Sheridan and Goree. Physics of Fluids B: Plasma Physics 3.10 (1991)
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Geometry and code Framework
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II. A simple fluid model of a DC discharge

• New plasma simulation code
• Fluid model in 1D discharge geometry
• DC discharge without magnetic field
• Electrons and one positive ion species considered 

in argon gas

• Fortran, MPI parallelization (future expansion to 
2D/3D)

• Time resolution : explicit 4th order Runge-Kutta / 
3rd order SSP Runge-Kutta

• Spatial discretization : 2nd order centered Finite 
Difference scheme with shifted indices for 
vectors for numerical stability

x



𝑛𝑒(𝑡)

𝑛𝑖(𝑡)

System of fluid equations – cold ion assumption

𝜀𝑒(𝑡)

𝑣𝑖(𝑡)
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II. A simple fluid model of a DC discharge

• Poisson’s equation

• Electron drift-diffusion flux

• Fluid equations are moments of the Boltzmann-Vlasov equation
• Ion energy equation not solved, assuming cold ions at 300K all along the simulation

• Thermalization due to collisions in the bulk plasma (weak electric field)
• Collisionless sheath

• Poisson equation for sheath potential resolution (no magnetic field)

Bittencourt. Fundamentals of Plasma Physics. 3rd ed. Springer New York (2004)
Hagelaar, “Modelling methods for low-temperature plasmas”, Université Toulouse III Paul Sabatier (2008)



Effective 
momentum 

transfer
Ionization

Excitation

SIGLO database

[3] Pitchford and Boeuf, The SIGLO database (2014). URL http://www.lxcat.net.
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II. A simple fluid model of a DC discharge



Experimental Ar+/Ar mobility database

Ellis76 [4], 
Phelps91 [5]

[4] Ellis, Rai, McDaniel, Mason and Viehland, Dat. and Nucl. Data Tables, 1976, 17: 177.
[5] Phelps, Journal of Physical and Chemical Reference Data, 1991, 20.3: 557-573.

𝐸/N, 300K
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II. A simple fluid model of a DC discharge

ν𝑖𝑛 = 𝑁
𝑒

𝑚𝑖𝜇𝑖𝑁
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• Test simulation parameters for the cold ion plasma fluid model

• 1D fluid discharge simulation including sheaths

• Background gas temperature fixed at 300K

• Ion temperature also fixed at 300K (cold ions)

L Initial 
nplasma

Initial 
εe

Vbias P Tgaz
𝜸

3 cm 1013 m-3 2 eV -205 V 30 Pa 300 K 0.05
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III. Validation of the model
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III. First 1D gas discharge simulation results and analysis 
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III. First 1D gas discharge simulation results and analysis 

Lieberman and Lichtenberg. Principles of Plasma Discharges and Materials Processing. Ed. by John Wiley & Sons. John Wiley & Sons, Inc. (2005)

• Plasma potential 
profile show good 
agreement

• Disagreement with 
the collisionless 
theory in the cathode 
sheath
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III. First 1D gas discharge simulation results and analysis

• Disagreement with the collisionless 
theory of cathode sheath

• Ion density profile

• Slow calculated ion exit 
velocity 

• Non negligible ionization 
source term inside the sheath

• -> Validation with fluid results from 
the literature and kinetic simulation 
results



• Simulation parameters from SOMAFOAM and Deconinck’s fluid models [8, 9]

• 1D fluid discharge simulation including sheaths

• Background gas and ion temperature fixed at 300K

• Further validation with kinetic simulation

L Initial 
nplasma

Initial 
εe

Vbias P Tgaz
𝜸

1 cm 1014 m-3 2 eV 250 V 130 Pa 300 K 0.05

[8] Abhishek Kumar Verma, Computer Physics Communications, 263-107855 (2021)
[9] Deconinck, Mahadevan and Raja, Comput. Phys. 228 (12) (2009) 4435–4443.
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III. Comparison with fluid model from the literature and PIC results



▪ Argon

▪ 1cm

▪ 250V DC

▪ 1Torr ≈ 130Pa
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III. Comparison with fluid model from the literature and PIC results

• Our code qualitatively recovers other published fluid simulation results

• Ion density hump in the cathode sheath also observed in fluid code results presented in the literature [8,9]

• Further validation of the code using a commercial PIC code VSIM from TechX [10]

[8] Abhishek Kumar Verma, Computer Physics Communications, 263-107855 (2021)
[9] Deconinck, Mahadevan and Raja, Comput. Phys. 228 (12) (2009) 4435–4443.
[10] Tech-X  Vsim: Multiphysics simulation software for your complex problems. https://www.txcorp.com/vsim/



• Siglo database

• E-n ionization, elastic collision

• 2 cases presented

• i-n elastic collisions only

• i-n elastic and charge exchange 
collisions

• Simulation parameters used in the PIC code

• Background neutral gas temperature fixed at 300K

• The treatment of collisions slightly differ in fluid codes and the PIC code

L Initial 
nplasma

Initial 
εe

Vbias P Tgaz
𝜸

1 cm 1014 m-3 2 eV 250 V 130 Pa 300 K 0.05
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III. Comparison with fluid model from the literature and PIC results

Fluid PIC

• Siglo database, Maxwellian electrons

• E-n ionization, elastic collision

• i-n elastic collisions (derivation of fluid equations), 
but other collisions are partially taken into account 
(experimental database)
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III. Comparison with fluid model from the literature and PIC results

• PIC simulation result 
with only ion-neutral 
elastic collisions

• Disagreement with 
the fluid results in 
the cathode sheath

• Ion density 
profile

• ion exit 

velocity 



Ion sheath 
density

Sheath 
width

Ion sheath 
velocity
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III. Comparison with fluid model from the literature and PIC results



• 1D3v PIC code simulation using VSIM

• Plasma discharge simulation using the 
same parameters as the fluid code, 
following the (x) direction

• Ion macroparticle velocities in parallel (x) 
and perpendicular (y, z) directions

22

III. Comparison with fluid model from the literature and PIC results



• Ion velocity distribution 
inside the cathode sheath 
(red box at 9.6mm)

• Symmetric perpendicular 
direction

• Asymmetric parallel 
direction – electric field 
acceleration

• Width of the distribution 
proportional to 
“temperatures”
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III. Comparison with fluid model from the literature and PIC results

300K

Ti≫300K

Ion velocity distribution in 
parallel direction (x)

Ion velocity distribution in 
perpendicular direction (y)

Ion velocity distribution in 
perpendicular direction (z)
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III. Comparison with fluid model from the literature and PIC results

• Noticeable heating of the ions within the cathode sheath

• Anisotropy, parallel/perpendicular directions
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• The ion momentum equation is already solved
• Ion thermal energy equation implemented

• 𝜈𝑖 = 𝜈𝑖𝑛 + 𝜈𝑖𝑧
𝑛𝑒

𝑛𝑖
 reflects the elastic collisions (𝜈𝑖𝑛) and the creation of cold, immobile ions from neutrals by 

impact ionization (𝜈𝑖𝑧
𝑛𝑒

𝑛𝑖
)

• Anisotropy in ion velocity distribution -> 1D fluid model along the parallel direction (of interest) calculating the 
ion parallel kinetic temperature

• The closure relation on the heat flux assumes a Fick’s law-like condition [11], but in 1D configuration

𝜀𝑖
𝑡ℎ =

1

2
𝑘𝐵𝑇𝑖

Ion thermal energy equation
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IV. Expansion of the plasma fluid model

𝜀𝑖,𝑡ℎ(𝑡) 𝑝𝑖

Bittencourt. Fundamentals of Plasma Physics. 3rd ed. Springer New York (2004)
[11] Hunana, Passot, Khomenko, et al., The Astrophysical Journal Supplement Series 260.2 (2022)



• Temperature gradient term and ion-neutral collision 
frequency

• Theoretical calculations suggest one, two or three 
temperature models for ion mobility [12,13,14]

• Experimental data base at 300K, ion temperature 
dependency can be added using empirical formula [15, 16]

• This impacts our fluid model through the ion-neutral 
elastic collision frequency 𝜈𝑖𝑛 which is obtained from 
the ion mobility

[12] Viehland and Mason, Annals of Physics, Volume 110, Issue 2 (1978)
[13] Lin, Viehland and Mason, Chemical Physics, Volume 37, Issue 3 (1979)
[14] McDaniel and Mason, Transport Properties of Ions in Gases, John Wiley & Sons, Inc. (1988)
[15] Khrapak et. Al., High Temp., 2020
[16] Frost, Phys. Rev., 1957

ν𝑖𝑛(𝑇𝑖 , 𝑇𝑁,
𝐸

𝑁
) =

𝑒

𝑚𝑖𝜇𝑖(𝑇𝑖 , 𝑇𝑁,
𝐸
𝑁)
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IV. Modified ion mobility formulaKinetic Theory of Mobility and Diffusion: Section 5.3

Kinetic Theory of Mobility and Diffusion: Section 5.3

ൗ𝐸 𝑁 =
(1Td = 10−21V.m2)



• Improved agreement 
between fluid and PIC 
results in the cathode 
sheath

• Higher secondary 
electron emission rate in 
fluid model for fit

• Semi-collisional regime   
particularly sensitive to     
the assumptions of the  
model
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IV. Comparison of fluid results with self-consistent ion temperature computation and PIC results

Ion sheath 
density

Sheath 
width

Ion sheath 
velocity

Bulk plasma 
density
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IV. Comparison of fluid results with self-consistent ion temperature computation and PIC results

• Fluid model approximately recovers PIC results in a qualitative and a quantitative way under similar modeling 
assumptions

• Further improvement of the model for other ion-neutral collisional processes 
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IV. Comparison of fluid results with self-consistent ion temperature computation and PIC results

Some problematics concerning the fluid results with

Khrapak’s formula

• The higher the electric field amplitude is, 
the lower the ion mobility should be 

• Ion-neutral charge exchange collisions are 
important for such energetic ions

• Empirical formula, at equilibrium: validity in 
the current simulation?
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IV. Influence of ion-neutral charge exchange collisions

• PIC simulation result 
with ion-neutral 
elastic and charge 
exchange collisions

• Even though the 
ions are noticeably 
slowed down, there 
is still no 
accumulation of 
ions in the cathode 
sheath
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IV. Influence of ion-neutral charge exchange collisions

• Noticeable discrepancy 
concerning ions – 
importance of charge 
exchange collisions

• A way to incorporate     
charge exchange             
collisions into the fluid 
model?
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IV. Influence of ion-neutral charge exchange collisions

Influence of charge exchange collisions at 130Pa

• Ion-neutral charge exchange 
collisions are important

• Ions slowed down, but still 
considerably heated in the 
cathode sheath

• Keep the ion thermal energy 
equation, but alternative way 
to compute total ion-neutral 
collision frequency
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IV. Comparison of fluid results with self-consistent ion temperature computation and PIC results

Ion-neutral total collision frequency calculation

• Using both ion-neutral elastic and charge 
exchange collision cross section

• Assuming shifted Maxwellian distributions 
of ions inside the cathode sheath

ν𝑖 = 𝑛𝑛 𝑣𝑖𝜎𝑖−𝑛 = 𝑓 𝑣𝑑,𝑖 , 𝑇𝑖

ν𝑖−𝑛,𝑓𝑙𝑢𝑖𝑑𝑒 = ν𝑖,𝐸𝐿 + ν𝑖,𝐶𝑋
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IV. Influence of ion-neutral charge exchange collisions

• PIC and fluid 
simulation result 
with ion-neutral 
elastic and charge 
exchange collisions

• Ion fluid velocity 
comparable in both 
simulations, but still 
no ion accumulation 
inside the cathode 
sheath in fluid 
simulation
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IV. Comparison of fluid results with self-consistent ion temperature computation and PIC results

• Fluid ion temperature profile comparable to the PIC one

• The ion mobility (estimated as 
𝑣𝑖

𝐸
 here) is decreasing as the electric field amplitude increases

• Further improvement of the model ongoing

mm
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IV. Influence of ion-neutral charge exchange collisions
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IV. Influence of ion-neutral charge exchange collisions
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Conclusions

• Starting from scratch, a 1D fluid DC discharge model including plasma sheath has been 
developed

• Our fluid models recovers other fluid results published in the literature

• Non negligible ion heating observed in kinetic simulation(moderate pressure range,         
intermediate collisional regime). 

• The addition of the ion energy equation to improves the fluid model results with respect 
to the PIC results (very sensitive to the assumptions of the model)

Perspectives

• Implementation of other inelastic collisional processes

• Proper implementation of charge exchange collisions in fluid model

• Shifted/truncated distribution functions for charged species inside the sheath

• Extension of the model in 2D with magnetic field
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V. Conclusion & perspectives
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