Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma 00000 Conclusions 00

Gaine plasma associée à l'émission secondaire d'électrons

C. Dufour, M. Muraglia, G. Fubiani, N. Claire, N. Dubuit, O. Agullo

Contact: clement.dufour@ik.me

Iodèle cinétique de la gaine o Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma 00000 Conclusions 00

Les émissions secondaires d'électrons (1)

L'émission thermionique^{*a*} :

^{*a*}Chapitre 1 : **Modinos1984**

Le bombardement ionique ^{*a*} :

Collision ion/paroi qui entraîne des émissions secondaires.

^aChapitre 9.3 : Lieberman2005

Les collisions électrons parois :

Backscattering/ True secondary^a

^aFurman2002; Bradshaw2024.

Introduction	
00000	

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions 00

Les émissions secondaires d'électrons (2)

Pour la physique de la gaine, on définit :

$$\gamma = \frac{\Gamma_{e^-,secondaire}}{\Gamma_{e^-,primaire}} \tag{1}$$

Dans les Tokamaks : $\gamma > 1$, avant la température de fusion du tungsten¹.

¹Campanell2019.

odèle cinétique de la gaine o Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions 00

La gaine avec émissions secondaires d'électrons ($\gamma > 1$)

ésolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma 00000 Conclusions 00

La gaine Inverse (Campanell²)

Propriétés :

- Accumulation d'électrons à la paroi :
- Ions repoussés par la paroi :
- γ > 1

Avantages:

- $T_{e,primaire} = T_{mur}$
- Réduction du sputtering

Quels sont les conditions d'apparition de la gaine inverse ?

²Campanell2017.

- **2** Modèle cinétique de la gaine
- **3** Résolution numérique de Vlasov-Poisson (CAMON)
- 4 Etude de la gaine plasma
- **5** Conclusions

Modèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON) 000000 Etude de la gaine plasma

Conclusions

Modèle cinétique de la gaine : Inversion de la gaine

La gaine est décrite par le système de Vlasov-Poisson :

$$\partial_{t}f_{e} + \vec{\nu} \cdot \nabla_{\vec{x}}f_{e} + \frac{e}{m_{e}} \nabla_{\vec{x}}\phi \cdot \nabla_{\vec{v}}f_{e} = \hat{C}_{e}$$
$$\partial_{t}f_{i} + \vec{\nu} \cdot \nabla_{\vec{x}}f_{i} - \frac{e}{m_{i}} \nabla_{\vec{x}}\phi \cdot \nabla_{\vec{v}}f_{i} = \hat{C}_{i}$$
$$\Delta\phi = -\frac{n_{i} - n_{e}}{\epsilon_{0}}$$
(2)

Modèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma 00000 Conclusions 00

Modèle cinétique pour simuler l'expérience

Collisions et chimie

- Ionisation: ¹ $\hat{C}_{e} = \langle \sigma v_{e} \rangle n_{n} (2f_{e,0} - f_{e})$ $\hat{C}_{i} = \langle \sigma v_{e} \rangle n_{e} f_{n}$ (3)
- 3-body recombinaison: ²

$$\hat{C}_e = -\tau_{rec} f_e n_i$$

$$\hat{C}_i = -\tau_{rec} f_i n_e$$
(4)

• Charge-Exchange: ³

$$\hat{C}_{i} = -\hat{C}_{n} = \int (f'_{n}f_{i} - f'_{i}f_{n})\sigma |\nu - \nu'| \, d\nu'$$
(5)

¹Carbone2021; Bartschat2016 ²Fujimoto ³Phelps1994

Aodèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON) ••••••

Etude de la gaine plasma 00000 Conclusions 00

Les équations résolues

Equations résolues

Opérateur de collision

• BGK:
$$\hat{C}_s = v_s(f_{0,s} - f_s)$$

• Dougherty^{*a*}:
$$\hat{C}_s = v_s \partial_{\nu} [(\nu - \bar{\nu})f_s + T_s \partial_{\nu} f_s]$$

$$\partial_{t}f_{e} + \vec{\nu} \cdot \nabla_{\vec{x}}f_{e} + \frac{e}{m_{e}} \nabla_{\vec{x}}\phi \cdot \nabla_{\vec{\nu}}f_{e} = \hat{C}_{e}$$

$$\partial_{t}f_{i} + \vec{\nu} \cdot \nabla_{\vec{x}}f_{i} - \frac{e}{m_{i}} \nabla_{\vec{x}}\phi \cdot \nabla_{\vec{\nu}}f_{i} = \hat{C}_{i}$$

$$\partial_{t}f_{n} + \vec{\nu} \cdot \nabla_{\vec{x}}f_{n} = \hat{C}_{n}$$

$$\Delta\phi = -\frac{n_{i} - n_{e}}{\epsilon_{0}}$$
(6)

Opérateur de collision/source (Chimie)

- Ionisation : $\hat{C}_e = \langle \sigma v_e \rangle n_n (2f_{e,0} f_e)^b$
- Charge-Exchange : $\hat{C}_{CX} = \int (f'_n f_i - f'_i f_n) \sigma |v - v'| dv'$
- Recombinaison : $\hat{C}_e = -\tau_{rec} f_e n_i^{c}$
- ^{*a*}Pezzi_2014. ^{*b*}Bernard2022

 $^{c}\tau_{rec}$ obtenu par *detailed balance*

Méthodes numériques (1)

Schéma numérique pour résoudre :

- Séparation des opérateurs (Strang Splitting)
- Advection (SL-CWENO 3³)
- Poisson (SOR)
- Opérateur de Dougherty (Crank-Nicolson⁴)
- BGK (RK4)

CAMON est théoriquement en $o(\Delta v^2 + \Delta x^2 + \Delta t^2)$

³Cho2021.

⁴Donnel2019; dutykh:hal-01401125.

Résolution numérique de Vlasov-Poisson (CAMON) ○○●○○○

Etude de la gaine plasma

Conclusions

(7)

Méthodes numériques (2)

Séparation des opérateurs

Objectif : se ramener à $\partial_t f = \hat{L}f$

$$\partial_t f = (\hat{L}_1 + \hat{L}_2)f$$

Solution : $f = \exp((\hat{L}_1 + \hat{L}_2)t)f_0 = \exp(\hat{L}_1 t)\exp(\hat{L}_2 t)f_0 + o(t)$

On utilise le strang splitting d'ordre 2.

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions 00

Méthodes numériques : Advection (3)

Méthode semi-lagrangienne

- Objectif : Résoudre $\partial_t f = -v \partial_x f$.
- Solution analytique : $f(t, x) = f(t_0, x v(t t_0))$

Reconstruction : CWENO 3-2⁵

⁵Cho2021.

Modèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON) ○○○○●○

Etude de la gaine plasma

Conclusions 00

Validation du code (Atténuation Landau)

En développant linéairement la distribution et le potentiel $f = f_0 + \delta f$, $\phi = \delta \phi$:

$$\delta\phi = \delta\phi_0 e^{-i(\omega t + kx)} \tag{8}$$

Si $\omega = \omega_R + i\gamma \Rightarrow$

- Théorie : $k = 0.5 \Rightarrow \gamma = -0.3066^{a}$
- Simulation : $k = 0.5 \Rightarrow \gamma = -0.307^{b}$

^{*a*}Utsumi1998.

^bConditions aux bord périodiques

Introduction	
00000	

Résolution numérique de Vlasov-Poisson (CAMON) 00000●

Etude de la gaine plasma

Conclusions 00

Validation du code (Method of Manufactured Solution)

On construit f_e pour vérifier l'équation de Poisson^{*a*} :

$$\phi = -\frac{A\cos(kx)\sin(t)}{k^2}$$

$$f_e = e^{-\nu^2/2} / \sqrt{2\pi} (1 + A\cos(kx)\sin(t)) \qquad (9)$$

$$d_t f = d_t f_e$$

$$\Delta \phi = n_e - n_i$$

CAMON est donc à l'ordre 2

Erreur = $\int (f_{theorie} - f_{num})^2$

^aBanks2019.

Numerical error

Résolution numérique de Vlasov-Poisson (CAMON) 000000 Etude de la gaine plasma ••••• Conclusions 00

Collisions et émissions secondaires⁶

La gaine collisionnelle

- Collisions électrons : $\hat{C} = \frac{1}{\tau_s} (n_s f_{0,s} - f_s)$
- Collisions ions : $\hat{C} = \langle \sigma \omega \rangle (n_s f_{0,s} - f_s)$
- Emission secondaire : $\Gamma_{e,secondaire} = 0$

La gaine SCL : (Space-Charge-Limited)

- Collisions électrons : $\hat{C} = \frac{1}{\tau_s} (n_s f_{0,s} - f_s)$
- Collisions ions : $\hat{C} = 0$
- Emission secondaire : $\Gamma_{e,secondaire} = \gamma \Gamma_{e,primaire}$

La gaine Inverse

- Collisions électrons : $\hat{C} = \frac{1}{\tau_s} (n_s f_{0,s} - f_s)$
- Collisions ions : $\hat{C} = \langle \sigma \omega \rangle (n_s f_{0,s} - f_s)$
- Emission secondaire : $\Gamma_{e,secondaire} = \gamma \Gamma_{e,primaire}$

⁶Campanell2017.

	duc	tion
000	00	

Modèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions

La gaine collisionnelle

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions

La gaine Space-Charge-Limited (SCL)

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions 00

Transition vers la gaine inverse

Charge Exchange collision^a

- Les collisions font perdre la vitesse des ions.
- Les ions sont piégés dans le puits de potentiel.
- Le potentiel remonte.
- La gaine s'inverse.

^aCampanell2017.

Introduction	
00000	

Iodèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON)

Etude de la gaine plasma

Conclusions

La gaine inverse

Conclusions et perspectives

Conclusions

• Développement et validation de CAMON : Code cinétique pour étudier la dynamique de la gaine avec émission secondaire.

Perspectives

- Comparer les résultats avec des résultats expérimentaux
- Prise en compte d'un champ magnétique. Etude dans des cas pertinents pour les tokamaks.

Introduction

Modèle cinétique de la gaine

Résolution numérique de Vlasov-Poisson (CAMON) 000000 Etude de la gaine plasma

Conclusions

Bibliography I

Annexes : numériques ●000

Validation Poisson (1)

Validation Poisson (2)

Annexes : Gaines

Accélération : rapport de masse électrons ions

- Rescaled Mass method : On diminue la masse des ions.
- Subcycling method : On itère N fois pour les électrons et 1 fois pour les ions.
- Numerical Time method (ou asynchronous subcycling) : On pose deux pas de temps différents dt_{ions} et dt_{e^-} .

=> si convergence : la solution vérifie :

$$\vec{v} \cdot \nabla_{\vec{x}} f_s - \frac{q_s}{m_s} \nabla_{\vec{x}} \phi \cdot \nabla_{\vec{v}} f_s = 0 \tag{11}$$

Schémas numériques

Tableaux de Butcher RK4 :

Strang Splititng :

$$e^{(\hat{L}_1+\hat{L}_2)t} = e^{\frac{1}{2}\hat{L}_1t}e^{\hat{L}_2t}e^{\frac{1}{2}\hat{L}_1t}$$
(12)

Intégration/dérivation :

$$\int_{a}^{b} = \frac{1}{3}h(f(a) + 4f(a+h) + f(b))$$
(13)
$$\partial_{\xi} u_{i} = \frac{-u_{i-1} + u_{i+1}}{2\Delta\xi}$$
(14)

Annexes : numériques 0000

Annexes : Gaines ●○○

Gaine sans collision

Opérateur de collisions

Dérivation de Liouville^{*a*} :

Fokker-Planck^{*a*} :

 $\hat{C}_{s,s'} = \frac{\partial}{\partial \nu} \cdot \left[D \partial_{\nu} f_s + d_c f_s \right]$

(17)

Dougherty:

- Conservation (n, v, v^2)
- Ker(C) = maxwellienne $\hat{C} = \frac{\partial}{\partial v} \cdot [T\partial_v f_s + (v - \langle v \rangle) f_s]$ (18)

$$\partial_t g + \hat{V}_1{}^b g + \hat{V}_2 g = \hat{S}^c \tag{16}$$

 $d_t f_1 = -n_0 \int d2 \, a_{12} \nabla_{\nu 1} g(12) \quad (15)$

^aSwanson2008.

 ${}^{b}\hat{V}_{1} = v_{1}\nabla_{r_{1}} + (n_{0}\int d_{3}a_{13}g)\nabla_{v}f_{1}$ ${}^{c}\hat{S} = -(a_{12}\nabla_{v_{1}} + a_{21}\nabla_{v_{2}})f_{1}f_{2}$

^{*a*}Hazeltime

Critère de Bohm

- Rupture à la quasi-neutralité : $\rho(\phi) = \partial_{\phi} \rho|_{\phi=0} \phi$
- $\left. \frac{\partial \rho}{\partial \phi} \right|_{\phi=0} \le 0$

•
$$v_i \ge \sqrt{\frac{k_b T_e}{m_i}}$$

=> Le critère de Bohm est un critère de stabilité⁷.