# cea irfm

#### Gaine et modélisation fluide du plasma de bord en fusion magnétique: besoins, questions ouvertes...

#### P. Tamain pour l'équipe SOLEDGE3X\*

\* H. Bufferand, G. Ciraolo, J. Denis, R. Düll, Y. Marandet, B. McGibbon, V. Quadri, N. Rivals, E. Serre, S. Suresh-Kumar, N. Varadarajan, H. Yang



energian energian energian

#### The heat exhaust issue in a nutshell

- In magnetic fusion devices (e.g. tokamaks), a large amount of power is convected by the plasma to the wall of the machine
- Anisotropy of magnetized plasma => power deposited on very thin layer on the wall
- E.g., in ITER: unacceptable heat loads!

 $50 MW \quad 100 MW \quad 50 MW$   $= P_{heat} + 0.2 P_{fus} - P_{rad} \approx 100 MW$   $P_{wall} = \frac{P_{plasma}}{4\pi R f_{geo} \lambda_q} \sim 130 MW \cdot m^{-2} \gg P_{max}$   $6 m \sim 10 \sim 1 mm$ 





### **Plasma neutral interactions in the divertor**

- Divertor recycling: ions impact wall re-enter the plasma after recombining at the wall
  - on metallic surfaces,  $\mathbf{R}_n \approx 100\%$
  - re-enter as atoms or molecules
- Zoo of plasma-neutrals interactions
  - Transfer of plasma momentum and energy to non-confined particles





#### **Detachment as a heat exhaust strategy**

• 2-point model:  $\Gamma_t = \left(\frac{n_u^2}{q_{\parallel}}\right) \left(\frac{7}{2} \frac{q_{\parallel}L}{\kappa_{0e}}\right)^{4/7} \frac{\gamma e^2}{2m_i}$ 

[Stangeby, The Plasma Boundary of Magnetic Fusion Devices]

- At least 20eV lost per recycling particle => drop of temperature and heat flux
- Can be amplified by seeding mid-heavy impurities (e.g., N or Ne)





- High enough density  $\Rightarrow$  plasma momentum and energy entirely transferred to photons and neutrals
  - Below 1eV: recombination before the wall => detachment

## **Detachment in practise**

In experiments:







In numerical modelling (SOLEDGE3X applied to ITER):



## Fluid edge plasma codes as the work-horse

Impurities

Wall

- Key question: can one reach detachment without impacting negatively discharge performance and stability?
  - Design of divertor and sub-systems

Fluid!

 Determine operational space: fuelling, upstream density, impurity seeding...

Plasma

(turbulent)

transport

Extremely non-linear & multi-physics system



#### **SOLEDGE3X:** a versatile fluid code for the edge plasma

- SOLEDGE3X: multi-fluid modelling tool for the edge plasma resulting from merge of SOLEDGE2D (2D transport code like SOLPS) and TOKAM3X (3D turbulence code)
- Key features:
  - Neutrals either fluid (embedded) or kinetic (EIRENE)
  - Arbitrary plasma composition based on Zhdanov closure
  - Complete plasma geometrical flexibility (arbitrary number of Xpoints)
  - Simulations up-to-the first wall with full wall geometry
  - Usable in 2D or 3D
  - Usable as mean-field or self-consistent turbulence code

|    | Mean-field   | Turbulence   |
|----|--------------|--------------|
| 2D | $\checkmark$ | $\checkmark$ |
| 3D | $\checkmark$ | $\checkmark$ |

More information and references on <a href="https://www.soledge3x.com">www.soledge3x.com</a>









3D turbulence

#### And the sheath in all this?

- Sheath physics enters the modelling at 2 places:
  - Boundary condition for the plasma fluid code
    - Typically at magnetic pre-sheath entrance
    - Position assumed to be the same as the wall in spite of extremely short mean-free path for molecules
  - Boundary conditions for kinetic neutrals
    - Emitted from the wall
    - Implicit sheath model to determine link with local plasma properties (flux, density, temperature, composition...)



#### Plasma fluid:

- fluxes (particle, momentum, energy)?
- Electrostatic and magnetic potential?



#### Kinetic neutrals:

- Energy and angular distribution function?
- Chemical nature?

#### **Sheath boundary conditions in SOLEDGE3X**

- Edge plasma fluid codes all rely on some flavor of Bohm boundary conditions
- In SOLEDGE3X, Bohm-Chodura for oblique incidence with drifts and single ion species

 $\begin{aligned} u_{\parallel i} \vec{b} \cdot \vec{n} &\geq c_s \vec{b} \cdot \vec{n} - \vec{u}_{\perp i} \cdot \vec{n} \\ \vec{j} \cdot \vec{n} &= \vec{\Gamma}_{n_i} \cdot \vec{n} \left( 1 - e^{\Lambda - \frac{e\Phi}{T_e}} \right) \\ \vec{\Gamma}_{E_{e/i}} \cdot \vec{n} &= \gamma_{e/i} T_{e/i} \vec{\Gamma}_{n_{e/i}} \cdot \vec{n} \end{aligned}$ 

$$c_{s} = \sqrt{\frac{Z_{i}T_{e} + T_{i}}{m_{i}}}$$

$$\Lambda = -0.5 \ln\left(2\pi \frac{m_{e}}{m_{i}}\left(1 + \frac{T_{i}}{T_{e}}\right)\right)$$

 $\vec{B}$ 

Typically  $\gamma_i = 2.5$  and  $\gamma_e \approx 4$ 

#### Alternate fluid boundary conditions exist but similar

Loizu et al. proposed alternate sheath boundary conditions for fluid codes [Loizu, PoP 2012]





- Overall similar to Bohm-Chodurah with additional correction terms
  - Boundary condition on T<sub>e</sub> raises questions concerning heat fluxes

#### So what is the issue?

- Issue: relevant reactor plasma conditions are not compatible with collison-less sheath for simple plasma at large incidence angle
  - Sheath heat transmission factors and fluid plasma description
  - Large range of collisionalities from collision-less to diffusive sheath
  - Complex plasma mix with possibly several dominant ion species
    - E.g., ITER high power seeded plasma: D + T + He + Ne + W
  - Small incidence angles are ubiquitous



|            | Low $v_{col}$ | High $v_{col}$ |
|------------|---------------|----------------|
| Single ion | Bohm          |                |
| Trace imp. |               |                |
| Arbitrary  |               |                |

#### Sheath heat transmission factors

Sheath heath transmission factors = kinetic correction to fluid model 

> $\vec{\Gamma}_{\mathrm{E}_{e/i}} \cdot \vec{n} = \gamma_{e/i} T_{e/i} \vec{\Gamma}_{\mathrm{n}_{e/i}} \cdot \vec{n}$ Typically  $\gamma_i = 2.5$  and  $\gamma_e \approx 4$

- Small fraction of hot electrons enough to deviate strongly from classical values
  - Very dependent on plasma conditions
  - Can be problematic even at high collisionality (example here)



#### Friction with neutrals pushes away from Bohm (1)

BIT1 (1D/3V kinetic SOL) simulations at high density
 *M*<sub>||</sub> < 1 everywhere due to friction with neutrals</li>

If SE = last point where plasma still magnetized

 $M_{\parallel} = M_{\chi} / \sin \theta$ 

• Correction to Bohm:

.

$$\chi = \frac{(\nu_{mt}(1-\alpha) + \nu_{ei})x_0}{2c_s \sin \theta} \qquad \alpha = \frac{u_{\parallel n}}{u_{\parallel i}}$$

 $M_{\parallel} = 1 + \chi - \sqrt{\chi^2 + 2\chi}$ 

$$M_{\perp}(x_0) = \sin\theta \sim 20\rho_i$$





Consequences:

#### 05/11/2024

[Tskhakaya, TSVV3 internal meeting]

Arbitrary

 $n_{\Gamma_i=const} / n_0$ 

10<sup>0</sup>

High  $v_{col}$ 

Tskhakaya

14

#### Wall density increases • Heat flux to the wall decreases in spite of $\gamma_e$ $\nearrow$ Application to ITER low power case: SOL ring at max. outer target load

80 u<sub>11</sub>, M<sub>11</sub>=1 u,, M,=0.6 60 (kms<sup>-1</sup>) 40 20 0 -20 50 100 150 0 parallel distance from inner target (m)

• Potential drop:  $\frac{e\Delta\Phi}{T_e} = \Lambda T_e - 0.5 \ln M_{\parallel}$ 



150

100

parallel distance from inner target (m)

10

#### Friction with neutrals pushes away from Bohm (2)

5

4

3

1

0

0

50

 $(10^{20} m^{-3})$ 

#### Single dominant species at high collisionality

Multi-species BIT1 (1D/3V kinetic SOL) simulations at high density with 1 dominant species (D)





SE

Strong coupling between main and impurity ions

$$M_{\parallel i} = M_{\parallel}^{main} \sqrt{\frac{m_i}{m_{main}}}$$

$$M_{\parallel}^{main} = 1 + \chi - \sqrt{\chi^2 + 2\chi}$$

[Tskhakaya, TSVV3 internal meeting]

|            | Low $v_{col}$ | High $v_{col}$ |
|------------|---------------|----------------|
| Single ion | Bohm          | Tskhakaya 1    |
| Trace imp. | ?             | Tskhakaya 2    |
| Arbitrary  |               |                |

—D<sup>+</sup> —Ar<sup>+</sup>

-Ar++

—Ar<sup>+3</sup>

-Ar+4

10<sup>-2</sup>

#### Arbitrary mix: no clear solution at low-medium $v_{col}$

#### Initial kinetic simulations with multi-dominant species => no D-T coupling!



[Tskhakaya, TSVV3 internal meeting]

|            | Low $v_{col}$ | High $v_{col}$ |
|------------|---------------|----------------|
| Single ion | Bohm          | Tskhakaya 1    |
| Trace imp. | ?             | Tskhakaya 2    |
| Arbitrary  | ?             |                |

# 

#### Arbitrary mix: a guess for high $v_{col}$ (1)

- Haven't heard (▲ not expert!) of sheath BC for fluid models with arbitrary ion mix
  - Here attempt at guessing a back-of-the-envelop behavior
- Reasonable assumption: high  $v_{col} \Rightarrow \forall i, j \ u_{\parallel i} = u_{\parallel j} = u_{\parallel j}$



$$\partial_t N + \partial_z (N u_{\parallel}) = S_N$$

$$M \partial_t (N u) + M \partial_z (N u_{\parallel}^2)$$

$$= -\partial_z (NT) + Z e N E_{\parallel} + R_{\parallel} + S_p$$

$$n_e = ZN$$

$$0 = -\partial_z (n_e T_e) - e n_e E_{\parallel} + R_{\parallel e} + S_{p_e}$$

$$R_{\parallel} + R_{\parallel e} = 0$$

Equivalent single ion species plasma

| $N = \Sigma_i n_i$      | $MN = \Sigma_i m_i n_i$ |
|-------------------------|-------------------------|
| $ZN = \Sigma_i Z_i n_i$ | $NT = \Sigma_i n_i T_i$ |

05/11/2024

#### Arbitrary mix: a guess for high $v_{col}$ (2)

Single-ion-species plasma equivalent to arbitrary ion mix:

 $N = \Sigma_i n_i \qquad MN = \Sigma_i m_i n_i$  $ZN = \Sigma_i Z_i n_i \qquad NT = \Sigma_i n_i T_i$ 

Then apply standard Bohm / Bohm-Chodurah / Tskhakaya:

$$\begin{split} \Delta \Phi &\equiv \Lambda T_{\rm e} = -0.5 T_e \ln \left( 2\pi \frac{m_e}{M} \left( Z + \frac{T}{T_e} \right) \right) \\ u_{\parallel} &\geq \sqrt{\frac{Z T_e + T}{M}} \\ \gamma_i &= 2.5 \\ \gamma_e &= 2 + \frac{e \Phi}{T_e} \end{split}$$

|            | Low $v_{col}$ | High $ u_{col}$ |
|------------|---------------|-----------------|
| Single ion | Bohm          | Tskhakaya 1     |
| Trace imp. | ?             | Tskhakaya 2     |
| Arbitrary  | ?             | Mean spec.?     |



## The problem of grazing angles

Parallel incidence BIT1 simulations without drifts show

expected reverse sheath [Tskhakaya, TSVV3 internal meeting]

Not clear down to which angle this is valid

 $u_{\parallel i}\vec{b}\cdot\vec{n} \ge c_s\vec{b}\cdot\vec{n} - \vec{u}_{\perp i}\cdot\vec{n} \quad \Rightarrow \quad u_{\parallel i} = c_s$ 

Incidence angle along ITER wall



15<sup>x</sup> 10<sup>5</sup> 10 Electric field EI. 10<sup>18′</sup> ج لال 10  $D^+$ 10<sup>1</sup> Density 10<sup>16</sup> 10<sup>-6</sup> 10<sup>-4</sup> 10<sup>-5</sup> 10<sup>-3</sup> 10<sup>-2</sup> 10<sup>-6</sup> 10<sup>-5</sup> 10<sup>-3</sup>  $10^{-1}$  $10^{-4}$  $10^{-2}$  $10^{-1}$ x [m] x [m]

## Which drift velocity?

- Bohm-Chodura and Loizu boundary conditions depend on drift-velocities
  - Both derived for cold ions, considering only ExB drift
  - At low incidence, drift term is not just a minor correction

$$u_{\parallel i} = c_s \left( \frac{\vec{u}_{\perp i} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \right)$$
 dominant if  $\tan \alpha < \frac{|\vec{u}_{\perp i}|}{c_s}$ 

- But fluid-drift theory involves 2 first order drifts: ExB and diamagnetic
  - Should one retain the diamagnetic drift even though it does not transport gyrocenters? What about additional drifts due to friction with neutrals?



## EADF at the wall matters (1)

- Energy recycling coefficient sensitive to angle of incidence
  - probability of fast specular reflection vs thermalization
  - Energy and Angular Distribution Function (EADF) at the solid surface matters

[Bufferand, J. Nucl. Mater. 2015]

- Standard sheath model (shifted Maxwellian) over-simplified and does not account for gyro-motion
  - Use PIC code database instead







## EADF at the wall matters (2)

- PIC database results in very different incidence angle
  - Mainly due to gyro-motion
- Changing the sheath model can significantly change plasma solution [Marandet, PSI conf. 2018]



 Results currently being revisited and extended at LAPLACE laboratory within ANR PLATUN





#### Conclusion

- Sheath is not explicitly modelled in edge plasma codes because of lengths and time scales
  - Appear as boundary conditions or 0D implicit models
- The choice of the sheath model heavily influences results as it determines all fluxes to the wall
- Here browsed many issues related to limits of available sheath models:
  - Consistency between fluid (pre-sheath) and kinetic (sheath) models
  - Sheath for arbitrary plasma mix
  - Large range of collisionalities, especially large collisionality
  - Low incidence angles making perpendicular motion important (gyro-motion and/or drifts)
  - others exist, e.g. inclusion of secondary electron
- Current state of the art: pieces of solutions for each sub-issue, but no model covering all the needs